迁移方式简介
将基于PyTorch的训练脚本迁移到昇腾AI处理器上进行训练,目前有以下3种方式:自动迁移(推荐)、工具迁移、手工迁移,且迁移前要保证该脚本能在GPU、CPU上运行。
- 自动迁移:在训练脚本中导入脚本转换库,然后拉起脚本执行训练。训练脚本在运行的同时,会自动将脚本中的CUDA接口替换为昇腾AI处理器支持的NPU接口。整体过程为边训练边转换。
- 工具迁移:训练前,通过脚本迁移工具,自动将训练脚本中的CUDA接口替换为昇腾AI处理器支持的NPU接口,并生成迁移报告(脚本转换日志、不支持算子的列表、脚本修改记录)。训练时,运行转换后的脚本。整体过程为先转换脚本,再进行训练。
- 手工迁移:算法工程师通过对模型的分析、GPU与NPU代码的对比进而对训练脚本进行修改,以支持在昇腾AI处理器上执行训练。迁移要点如下。
- 定义NPU为训练设备,或将训练脚本中适配GPU的接口切换至适配NPU的接口。
- 多卡迁移需修改芯片间通信方式为hccl。
父主题: 模型迁移