下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

量化因子记录文件

量化因子record文件格式,为基于protobuf协议的序列化数据结构文件,通过该文件、量化配置文件以及原始网络模型文件,生成量化后的模型文件。

  • convert_model接口量化场景下对应的protobuf原型定义为(或查看昇腾模型压缩工具安装目录/amct_tensorflow/proto/scale_offset_record_tf.proto文件):
    syntax = "proto2";
    package AMCTTensorflow;
    
    // this proto is designed for convert_model API
    message SingleLayerRecord {
        optional float scale_d = 1;
        optional int32 offset_d = 2;
        repeated float scale_w = 3;
        repeated int32 offset_w = 4;
        // convert_model does not support this field [shift_bit] yet
        repeated uint32 shift_bit = 5;
        optional bool skip_fusion = 9 [default = false];
    }
    
    message MapFiledEntry {
        optional string key = 1;
        optional SingleLayerRecord value = 2;
    }
    
    message ScaleOffsetRecord {
        repeated MapFiledEntry record = 1;
    }

    该场景下对应参数说明如下:

    消息

    是否必填

    类型

    字段

    说明

    SingleLayerRecord

    -

    -

    -

    包含了量化层所需要的所有量化因子记录信息。

    optional

    float

    scale_d

    数据量化scale因子,仅支持对数据进行统一量化。

    optional

    int32

    offset_d

    数据量化offset因子,仅支持对数据进行统一量化。

    repeated

    float

    scale_w

    权重量化scale因子,支持标量(对当前层的权重进行统一量化),向量(对当前层的权重按channel_wise方式进行量化)两种模式,仅支持卷积层(Conv2D)、Depthwise卷积层(DepthwiseConv2dNative)、反卷积层(Conv2DBackpropInput)类型进行channel_wise量化模式。

    repeated

    int32

    offset_w

    权重量化offset因子,同scale_w一样支持标量和向量两种模式,且需要同scale_w维度一致,当前不支持权重带offset量化模式,offset_w仅支持0。

    repeated

    uint32

    shift_bit

    移位因子。convert_model接口场景下预留字段,当前不支持,不需要配置。

    optional

    bool

    skip_fusion

    配置当前层是否要跳过Conv+BN融合、Depthwise_Conv+BN融合、Group_conv+BN融合、BatchNorm融合,默认为false,即当前层要做上述融合。

    ScaleOffsetRecord

    -

    -

    -

    map结构,为保证兼容性,采用离散的map结构。

    repeated

    MapFiledEntry

    record

    每个record对应一个量化层的量化因子记录;record包括两个成员:

    • key为所记录量化层的layer name。
    • value对应SingleLayerRecord定义的具体量化因子。

    MapFiledEntry

    optional

    string

    key

    层名。

    optional

    SingleLayerRecord

    value

    量化因子配置。

  • 量化感知训练或稀疏场景下由昇腾模型压缩工具生成的量化因子对应的protobuf原型定义为(或查看昇腾模型压缩工具安装目录/amct_tensorflow/proto/inner_scale_offset_record_tf.proto文件):
    syntax = "proto2";
    import "amct_tensorflow/proto/basic_info.proto";
    package AMCTTensorflow;
    
    // this proto is designed for amct tools
    message InnerSingleLayerRecord {
        optional float scale_d = 1;
        optional int32 offset_d = 2;
        repeated float scale_w = 3;
        repeated int32 offset_w = 4;
        repeated uint32 shift_bit = 5;
        // the cluster of nuq, only nuq layer has this field;
        repeated int32 cluster = 6;
        optional bool skip_fusion = 9 [default = false];
        optional string dst_type = 10 [default = 'INT8'];
        repeated string prune_producer = 11;
        repeated string prune_consumer = 12;
    }
    
    message InnerMapFiledEntry {
        optional string key = 1;
        optional InnerSingleLayerRecord value = 2;
    }
    
    message InnerScaleOffsetRecord {
        repeated InnerMapFiledEntry record = 1;
        repeated PruneRecord prune_record = 2;
    }
    
    message PruneRecord {
        repeated PruneNode producer = 1;
        repeated PruneNode consumer = 2;
        optional PruneNode selective_prune = 3;
    }
    
    message PruneNode {
        required string name = 1;
        repeated AMCTProto.AttrProto attr = 2;
    }

    该场景下对应参数说明如下:

    消息

    是否必填

    类型

    字段

    说明

    InnerSingleLayerRecord

    -

    -

    -

    包含了量化层所需要的所有量化因子记录信息。

    optional

    float

    scale_d

    数据量化scale因子,仅支持对数据进行统一量化。

    optional

    int32

    offset_d

    数据量化offset因子,仅支持对数据进行统一量化。

    repeated

    float

    scale_w

    权重量化scale因子,支持标量(对当前层的权重进行统一量化),向量(对当前层的权重按channel_wise方式进行量化)两种模式,仅支持卷积层(Conv2D)、Depthwise卷积层(DepthwiseConv2dNative)、反卷积层(Conv2DBackpropInput)类型进行channel_wise量化模式。

    repeated

    int32

    offset_w

    权重量化offset因子,同scale_w一样支持标量和向量两种模式,且需要同scale_w维度一致,当前不支持权重带offset量化模式,offset_w仅支持0。

    repeated

    uint32

    shift_bit

    移位因子。

    repeated

    int32

    cluster

    聚类中心。只有非均匀量化场景下需要使能该字段。

    optional

    bool

    skip_fusion

    配置当前层是否要跳过Conv+BN融合、Depthwise_Conv+BN融合、Group_conv+BN融合、BatchNorm融合,默认为false,即当前层要做上述融合。

    optional

    string

    dst_type

    量化位宽,包括INT8和INT4两种量化类型。

    InnerScaleOffsetRecord

    -

    -

    -

    map结构,为保证兼容性,采用离散的map结构。

    repeated

    InnerMapFiledEntry

    record

    每个record对应一个量化层的量化因子记录;record包括两个成员:

    • key为所记录量化层的layer name。
    • value对应SingleLayerRecord定义的具体量化因子。

    repeated

    PruneRecord

    prune_record

    稀疏信息的记录。

    InnerMapFiledEntry

    optional

    string

    key

    层名。

    optional

    InnerSingleLayerRecord

    value

    量化因子配置。

    PruneRecord

    -

    -

    -

    稀疏信息的记录。

    repeated

    PruneNode

    producer

    稀疏的producer,可稀疏结点间级联关系的根节点。

    例如conv1>bn>relu>conv2都可以稀疏,且bn、relu、conv2都会受到conv1稀疏的影响,则bn、relu、conv2是conv1的consumer;conv1是bn、relu、conv2的producer。

    repeated

    PruneNode

    consumer

    稀疏的consumer,可稀疏结点间级联关系的下游节点。

    例如conv1>bn>relu>conv2都可以稀疏,且bn、relu、conv2都会受到conv1稀疏的影响,则bn、relu、conv2是conv1的consumer;conv1是bn、relu、conv2的producer。

    optional

    PruneNode

    selective_prune

    4选2结构化稀疏节点。

    由于硬件约束,该芯片不支持4选2结构化稀疏特性。

    PruneNode

    -

    -

    -

    稀疏的节点。

    required

    string

    name

    节点名称。

    repeated

    AMCTProto.AttrProto

    attr

    节点属性。

对于optional字段,由于protobuf协议未对重复出现的值报错,而是采用覆盖处理,因此出现重复配置的optional字段内容时会默认保留最后一次配置的值,需要用户自己保证文件的正确性

  • 量化record文件

    对于一般量化层需要配置包含scale_d、offset_d、scale_w、offset_w、shift_bit参数,对于AvgPool因为没有权重,因此不能够配置scale_w、offset_w参数,量化因子record文件格式参考示例如下(如下示例以inner_scale_offset_record.proto原型文件对应的量化因子为例进行说明):

    record {
      key: "fc4/Tensordot/MatMul"
      value {
        scale_d: 0.0798481479
        offset_d: 1
        scale_w: 0.00297622895
        offset_w: 0
        shift_bit: 1
        dst_type: "INT8"
      }
    }
    record {
      key: "depthwise"
      value {
        scale_d: 0.00962011795
        offset_d: 1
        scale_w: 0.00787108205
        scale_w: 0.00787108205
        scale_w: 0.00787108205
        offset_w: 0
        offset_w: 0
        offset_w: 0
        shift_bit: 1
        shift_bit: 1
        shift_bit: 1
        skip_fusion: true
        dst_type: "INT4"
      }
    }
    record {
      key: "conv2d/Conv2D"
      value {
        scale_d: 0.00392156886
        offset_d: -128
        scale_w: 0.00106807391
        scale_w: 0.00104224426
        scale_w: 0.0010603976
        offset_w: 0
        offset_w: 0
        offset_w: 0
        shift_bit: 1
        shift_bit: 1
        shift_bit: 1
        dst_type: "INT4"
      }
    }
  • 通道稀疏record文件记录各稀疏层间的级联关系,其格式参考示例如下:
    prune_record {
      producer {
        name: "conv_1"
        attr {
          name: "type"
          type: STRING
          s: "Conv2D"
        }
        attr {
          name: "begin"
          type: INT
          i: 0
        }
        attr {
          name: "end"
          type: INT
          i: 64
        }
      }
      consumer {
        name: "BN_1"
        attr {
          name: "type"
          type: STRING
          s: "FusedBatchNormV3"
        }
        attr {
          name: "begin"
          type: INT
          i: 0
        }
        attr {
          name: "end"
          type: INT
          i: 64
        }
      }
    }
  • 结构化稀疏record文件参考示例如下:
    prune_record {
      selective_prune {
        name: "conv2d/Conv2D"
        attr {
          name: "mask_shape"
          type: INTS
          ints: 3
          ints: 3
          ints: 3
          ints: 32
        }
      }
    }
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词