配置文件及参数说明
量化配置文件
如果通过create_quant_config接口生成的config.json量化配置文件,推理精度不满足要求,则需要参见该章节不断调整config.json文件中的内容,直至精度满足要求,该文件部分内容样例如下:
- 均匀量化配置文件(数据量化使用IFMR数据量化算法)
{ "version":1, "batch_num":2, "activation_offset":true, "joint_quant":false, "do_fusion":true, "skip_fusion_layers":[], "tensor_quantize":[ { "layer_name": "maxpool_ld_default", "input_index":0, "activation_quant_params":{ "num_bits":8, "max_percentile":0.999999, "min_percentile":0.999999, "search_range":[ 0.7, 1.3 ], "search_step":0.01 "act_algo":"ifmr" "asymmetric":false } } }, "layer_name1":{ "quant_enable":true, "dmq_balancer_param":0.5, "activation_quant_params":{ "num_bits":8, "max_percentile":0.999999, "min_percentile":0.999999, "search_range":[ 0.7, 1.3 ], "search_step":0.01 "act_algo":"ifmr" "asymmetric":false }, "weight_quant_params":{ "num_bits":8, "wts_algo":"arq_quantize", "channel_wise":true } }, "layer_name2":{ "quant_enable":true, "dmq_balancer_param":0.5, "activation_quant_params":{ "num_bits":8, "max_percentile":0.999999, "min_percentile":0.999999, "search_range":[ 0.7, 1.3 ], "search_step":0.01 "act_algo":"ifmr" "asymmetric":false }, "weight_quant_params":{ "num_bits":8, "wts_algo":"arq_quantize", "channel_wise":false } } }
- 均匀量化配置文件(数据量化使用HFMG数据量化算法)
{ "version":1, "batch_num":2, "activation_offset":true, "do_fusion":true, "skip_fusion_layers":[], "tensor_quantize":[ { "layer_name": "maxpool_ld_default", "input_index":0, "activation_quant_params":{ "num_bits":8, "max_percentile":0.999999, "min_percentile":0.999999, "search_range":[ 0.7, 1.3 ], "search_step":0.01 "act_algo":"hfmg" "asymmetric":false } } }, "layer_name1":{ "quant_enable":true, "dmq_balancer_param":0.5, "activation_quant_params":{ "num_bits":8, "act_algo":"hfmg", "num_of_bins":4096 "asymmetric":false }, "weight_quant_params":{ "num_bits":8, "wts_algo":"arq_quantize", "channel_wise":true } } }
参数说明
配置文件中参数说明如下:
作用 |
控制量化配置文件版本号 |
---|---|
类型 |
int |
取值范围 |
1 |
参数说明 |
目前仅有一个版本号1。 |
推荐配置 |
1 |
可选或者必选 |
可选 |
作用 |
控制量化使用多少个batch的数据。 |
---|---|
类型 |
int |
取值范围 |
大于0 |
参数说明 |
如果不配置,则使用默认值1,建议校准集图片数量不超过50张,根据batch的大小batch_size计算相应的batch_num数值。 batch_num*batch_size为量化使用的校准集图片数量。 其中batch_size为每个batch所用的图片数量。 |
推荐配置 |
1 |
必选或可选 |
可选 |
作用 |
控制数据量化是对称量化还是非对称量化。全局配置参数。 若配置文件中同时存在activation_offset和asymmetric参数,asymmetric参数优先级>activation_offset参数。 |
---|---|
类型 |
bool |
取值范围 |
true或false |
参数说明 |
|
推荐配置 |
true |
必选或可选 |
可选 |
作用 |
是否进行Eltwise联合量化。 |
---|---|
类型 |
bool |
取值范围 |
true或false |
参数说明 |
|
推荐配置 |
false |
必选或可选 |
可选 |
作用 |
是否开启融合功能。 |
---|---|
类型 |
bool |
取值范围 |
true或false |
参数说明 |
当前仅支持Conv+BN融合。 |
推荐配置 |
true |
可选或必选 |
可选 |
作用 |
跳过可融合的层。 |
---|---|
类型 |
string |
取值范围 |
可融合层的层名。当前仅支持Conv+BN融合。 |
参数说明 |
不需要做融合的层。 |
推荐配置 |
- |
可选或必选 |
可选 |
作用 |
指定某个网络层的量化配置。 |
---|---|
类型 |
object |
取值范围 |
- |
参数说明 |
参数内部包含如下参数:
|
推荐配置 |
- |
必选或可选 |
可选 |
作用 |
该层是否做量化。 |
---|---|
类型 |
bool |
取值范围 |
true或false |
参数说明 |
|
推荐配置 |
true |
必选或可选 |
可选 |
作用 |
DMQ均衡算法中的迁移强度。 |
---|---|
类型 |
float |
取值范围 |
[0.2, 0.8] |
参数说明 |
代表将activation数据上的量化难度迁移至weight权重的程度,数据分布的离群值越大迁移强度应设置较小。 |
推荐配置 |
0.5 |
必选或可选 |
可选 |
作用 |
该层数据量化的参数。 |
---|---|
类型 |
object |
取值范围 |
- |
参数说明 |
activation_quant_params内部包含如下参数,IFMR算法相关参数与HFMG算法相关参数在同一层中不能同时出现:
|
推荐配置 |
- |
必选或可选 |
可选 |
作用 |
该层权重量化的参数。 |
---|---|
类型 |
object |
取值范围 |
- |
参数说明 |
|
推荐配置 |
- |
必选或可选 |
可选 |
作用 |
量化位宽。 |
---|---|
类型 |
int |
取值范围 |
8 |
参数说明 |
当前仅支持配置为8,表示采用INT8量化位宽 |
推荐配置 |
- |
必选或可选 |
必选 |
作用 |
数据量化算法。 |
---|---|
类型 |
string |
取值范围 |
ifmr或者hfmg |
参数说明 |
IFMR数据量化算法:ifmr HFMG数据量化算法:hfmg |
推荐配置 |
- |
必选或可选 |
可选 |
作用 |
控制数据量化是对称量化还是非对称量化。用于控制逐层量化算法的选择。 若配置文件中同时存在activation_offset和asymmetric参数,asymmetric参数优先级>activation_offset参数。 |
---|---|
类型 |
bool |
取值范围 |
true或false |
参数说明 |
|
推荐配置 |
true |
必选或可选 |
可选 |
作用 |
IFMR数据量化算法中,最大值搜索位置参数。 |
---|---|
类型 |
float |
取值范围 |
(0.5,1] |
参数说明 |
在从大到小排序的一组数中,决定取第多少大的数,比如有100个数,1.0表示取第100-100*1.0=0,对应的就是第一个大的数。 对待量化的数据做截断处理时,该值越大,说明截断的上边界越接近待量化数据的最大值。 |
推荐配置 |
0.999999 |
必选或可选 |
可选 |
作用 |
IFMR数据量化算法中,最小值搜索位置参数。 |
---|---|
类型 |
float |
取值范围 |
(0.5,1] |
参数说明 |
在从小到大排序的一组数中,决定取第多少小的数,比如有100个数,1.0表示取第100-100*1.0=0,对应的就是第一个小的数。 对待量化的数据做截断处理时,该值越大,说明截断的下边界越接近待量化数据的最小值。 |
推荐配置 |
0.999999 |
必选或可选 |
可选 |
作用 |
IFMR数据量化算法中,控制量化因子的搜索范围[search_range_start, search_range_end]。 |
---|---|
类型 |
list,列表中两个元素类型为float。 |
取值范围 |
0<search_range_start<search_range_end |
参数说明 |
控制截断的上边界的浮动范围。
|
推荐配置 |
[0.7,1.3] |
必选或可选 |
可选 |
作用 |
IFMR数据量化算法中,控制量化因子的搜索步长。 |
---|---|
类型 |
float |
取值范围 |
(0, (search_range_end-search_range_start)] |
参数说明 |
控制截断的上边界的浮动范围步长,值越小,浮动步长越小。 |
推荐配置 |
0.01 |
必选或可选 |
可选 |
作用 |
HFMG数据量化算法用于调整直方图的bin(直方图中的一个最小单位直方图形)数目。 |
---|---|
类型 |
unsigned int |
取值范围 |
{1024, 2048, 4096, 8192} |
参数说明 |
num_of_bins数值越大,直方图拟合原始数据分布的能力越强,可能获得更佳的量化效果,但训练后量化过程的耗时也会更长。 |
推荐配置 |
4096 |
必选或可选 |
HFMG算法量化场景下,该参数可选。 |
作用 |
权重量化算法 |
---|---|
类型 |
string |
取值范围 |
arq_quantize |
参数说明 |
ARQ权重量化算法:arq_quantize |
推荐配置 |
- |
必选或可选 |
可选 |
作用 |
ARQ权重量化算法中,是否对每个channel采用不同的量化因子。 |
---|---|
类型 |
bool |
取值范围 |
true或false |
参数说明 |
|
推荐配置 |
true |
必选或可选 |
可选 |
作用 |
指定某个网络层的量化配置。 |
---|---|
类型 |
object |
取值范围 |
- |
参数说明 |
参数内部包含如下参数:
|
推荐配置 |
- |
必选或可选 |
可选 |
作用 |
需要对节点输入Tensor进行训练后量化的节点名称。 |
---|---|
类型 |
string |
取值范围 |
- |
参数说明 |
当前仅支持对MaxPool算子的输入Tensor进行量化。 |
推荐配置 |
- |
必选或可选 |
必选 |
作用 |
需要对节点输入Tensor进行训练后量化的节点的输入索引。 |
---|---|
类型 |
uint32 |
取值范围 |
- |
参数说明 |
节点的输入索引。 |
推荐配置 |
- |
必选或可选 |
必选 |