下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

调用NN类算子接口示例代码

本节介绍基于单算子API执行的方式调用NN类算子的示例代码。

基本原理

NN(Neural Network)类算子主要实现数学基础运算(如加、减、乘、除等)以及CNN相关的操作(如卷积、池化、激活函数)等详细的算子API介绍请参见NN类算子接口。NN类算子的接口调用流程,请参见单算子API执行接口调用流程

单算子API执行的算子接口一般定义为“两段式接口”,其中NN类算子接口示例如下:

1
2
aclnnStatus aclnnXxxGetWorkspaceSize(const aclTensor *src, ..., aclTensor *out, ..., uint64_t *workspaceSize, aclOpExecutor **executor);
aclnnStatus aclnnXxx(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream);

其中aclnnXxxGetWorkspaceSize为第一段接口,主要用于计算本次NN类算子API调用计算过程中需要多少的workspace内存。获取到本次计算需要的workspace大小后,按照workspaceSize大小申请Device侧内存,然后调用第二段接口aclnnXxx执行计算

示例代码

本章以Add算子调用为例,介绍编写算子调用的代码逻辑。其他NN类算子的调用逻辑与Add算子大致一样,请根据实际情况自行修改代码。

已知Add算子实现了张量加法运算,计算公式为:y=x1+αxx2。您可以获取如下示例代码,并将文件命名为“test_add.cpp”,代码如下:

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_xxx.h"

#define CHECK_RET(cond, return_expr) \
    do {                               \
        if (!(cond)) {                   \
        return_expr;                   \
        }                                \
    } while (0)

#define LOG_PRINT(message, ...)     \
    do {                              \
        printf(message, ##__VA_ARGS__); \
    } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shapeSize = 1;
    for (auto i : shape) {
        shapeSize *= i;
  }
    return shapeSize;
}

int Init(int32_t deviceId, aclrtContext* context, aclrtStream* stream) {
    // 固定写法,acl初始化
    auto ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateContext(context, deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetCurrentContext(*context);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);

    ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
       strides[i] = shape[i + 1] * strides[i + 1];
    }

    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}

int main() {
    // 1.(固定写法)device/context/stream初始化
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 0;
    aclrtContext context;
    aclrtStream stream;
    auto ret = Init(deviceId, &context, &stream);
    // check根据自己的需要处理
    CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    // 2.构造输入与输出,需要根据API的接口自定义构造
    std::vector<int64_t> selfShape = {4, 2};
    std::vector<int64_t> otherShape = {4, 2};
    std::vector<int64_t> outShape = {4, 2};
    void* selfDeviceAddr = nullptr;
    void* otherDeviceAddr = nullptr;
    void* outDeviceAddr = nullptr;
    aclTensor* self = nullptr;
    aclTensor* other = nullptr;
    aclScalar* alpha = nullptr;
    aclTensor* out = nullptr;
    std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5, 6, 7};
    std::vector<float> otherHostData = {1, 1, 1, 2, 2, 2, 3, 3};
    std::vector<float> outHostData = {0, 0, 0, 0, 0, 0, 0, 0};
    float alphaValue = 1.2f;
    // 创建self aclTensor
    ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建other aclTensor
    ret = CreateAclTensor(otherHostData, otherShape, &otherDeviceAddr, aclDataType::ACL_FLOAT, &other);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建alpha aclScalar
    alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
    CHECK_RET(alpha != nullptr, return ret);
    // 创建out aclTensor
    ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
    CHECK_RET(ret == ACL_SUCCESS, return ret);

    // 3.调用CANN算子库API
    uint64_t workspaceSize = 0;
    aclOpExecutor* executor;
    // 调用aclnnAdd第一段接口
    ret = aclnnAddGetWorkspaceSize(self, other, alpha, out, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAddGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    void* workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
    }
    // 调用aclnnAdd第二段接口
    ret = aclnnAdd(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnAdd failed. ERROR: %d\n", ret); return ret);
    // 4.(固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    // 5.获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
    auto size = GetShapeSize(outShape);
    std::vector<float> resultData(size, 0);
    ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr, size * sizeof(float),
                      ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < size; i++) {
        LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
    }

    // 6.释放aclTensor和aclScalar,需要根据具体API的接口定义修改
    aclDestroyTensor(self);
    aclDestroyTensor(other);
    aclDestroyScalar(alpha);
    aclDestroyTensor(out);

    // 7.释放device资源,需要根据具体API的接口定义修改
    aclrtFree(selfDeviceAddr);
    aclrtFree(otherDeviceAddr);
    aclrtFree(outDeviceAddr);
    if (workspaceSize > 0) {
        aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtDestroyContext(context);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}

CMakeLists文件

本章以Add算子编译脚本为例,介绍如何编写算子编译脚本CMakeLists.txt。其他NN类算子的编译脚本与Add算子大致一样,请根据实际情况自行修改脚本。

# Copyright (c) Huawei Technologies Co., Ltd. 2019. All rights reserved.

# CMake lowest version requirement
cmake_minimum_required(VERSION 3.14)

# 设置工程名
project(ACLNN_EXAMPLE)

# Compile options
add_compile_options(-std=c++11)

# 设置编译选项
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY  "./bin")    
set(CMAKE_CXX_FLAGS_DEBUG "-fPIC -O0 -g -Wall")
set(CMAKE_CXX_FLAGS_RELEASE "-fPIC -O2 -Wall")

# 设置可执行文件名(如opapi_test),并指定待运行算子文件*.cpp所在目录
add_executable(opapi_test
               test_add.cpp) 

# 设置ASCEND_PATH(CANN包目录)和INCLUDE_BASE_DIR(头文件目录)
if(NOT "$ENV{ASCEND_CUSTOM_PATH}" STREQUAL "")      
    set(ASCEND_PATH $ENV{ASCEND_CUSTOM_PATH})
else()
    set(ASCEND_PATH "/usr/local/Ascend/")
endif()
set(INCLUDE_BASE_DIR "${ASCEND_PATH}/include")
include_directories(
    ${INCLUDE_BASE_DIR}
    ${INCLUDE_BASE_DIR}/aclnn
)

# 设置链接的库文件路径
target_link_libraries(opapi_test PRIVATE
                      ${ASCEND_PATH}/lib64/libascendcl.so
                      ${ASCEND_PATH}/lib64/libnnopbase.so
                      ${ASCEND_PATH}/lib64/libopapi.so)

# 可执行文件在CMakeLists文件所在目录的bin目录下
install(TARGETS opapi_test DESTINATION ${CMAKE_RUNTIME_OUTPUT_DIRECTORY})

编译与运行

  • 在编译与运行之前,请确保应用开发环境已就绪,具体请参见准备开发和运行环境
  • 更多关于编译和运行的详细操作,可参见应用调试章节中“编译及运行应用”内容。
  1. 根据前文示例代码CMakeLists文件,提前准备好算子的调用代码(*.cpp)和编译脚本(CMakeLists.txt)。
  2. 配置环境变量。

    安装CANN软件后,使用CANN运行用户(如HwHiAiUser)登录环境,执行如下命令设置环境变量。其中${install_path}为CANN软件安装后文件存储路径,请根据实际情况替换该路径。

    source ${install_path}/set_env.sh
  3. 编译并运行。
    1. 进入CMakeLists.txt所在目录,执行如下命令,新建build目录存放生成的编译文件。
      mkdir -p build 
    2. 进入CMakeLists.txt所在目录,执行cmake命令编译,再执行make命令生成可执行文件。
      cmake ./ -DCMAKE_CXX_COMPILER=g++ -DCMAKE_SKIP_RPATH=TRUE
      make

      编译成功后,会在当前目录的bin目录下生成opapi_test可执行文件。

    3. 进入bin目录,运行可执行文件opapi_test。
      ./opapi_test

      以Add算子的运行结果为例,运行后的结果如下:

搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词