下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

save_quant_retrain_model

功能说明

量化感知训练接口,根据用户最终的重训练好的模型,插入AscendQuant、AscendDequant等算子,生成最终量化精度仿真模型以及量化部署模型。

函数原型

save_quant_retrain_model (config_file, model, record_file, save_path, input_data, input_names=None, output_names=None, dynamic_axes=None)

参数说明

参数名

输入/返回值

含义

使用限制

config_file

输入

用户生成的量化感知训练配置文件,用于指定模型network中量化层的配置情况。

数据类型:string

model

输入

已进行量化感知训练后的量化模型。

数据类型:torch.nn.module

record_file

输入

量化因子记录文件路径及名称。

数据类型:string

save_path

输入

量化模型存放路径。

该路径需要包含模型名前缀,例如./quantized_model/*model。

数据类型:string

input_data

输入

模型的输入数据。一个torch.tensor会被等价为tuple(torch.tensor)。

数据类型:tuple

input_names

输入

模型的输入的名称,用于保存的量化onnx模型中显示。

默认值:None

数据类型:list(string)

output_names

输入

模型的输出的名称,用于保存的量化onnx模型中显示。

默认值:None

数据类型:list(string)

dynamic_axes

输入

对模型输入输出动态轴的指定,例如对于输入inputs(NCHW),N、H、W为不确定大小,输出outputs(NL),N为不确定大小,则指定形式为:

{"inputs": [0,2,3], "outputs": [0]},其中0,2,3分别表示N,H,W所在位置的索引。

默认值:None

数据类型:dict<string, dict<python:int, string>> or dict<string, list(int)>

返回值说明

无。

函数输出

  • 精度仿真模型文件:ONNX格式的模型文件,模型名中包含fake_quant,可以在ONNX Runtime环境进行精度仿真。

    fake_quant模型主要用于验证量化后模型的精度,可以在ONNX Runtime环境下运行。进行前向推理的计算过程中,在fake_quant模型中对卷积层等的输入数据和权重进行了量化反量化的操作,来模拟量化后的计算结果,从而快速验证量化后模型的精度。

    如下图所示,以INT8量化为例,Quant层、Conv2d卷积层和DeQuant层之间的数据都是Float32数据类型的,其中Quant层将数据量化到INT8又反量化为Float32,权重也是量化到INT8又反量化为Float32,实际卷积层的计算是基于Float32数据类型的,该模型用于在ONNX Runtime环境验证量化后模型的精度,不能够用于ATC工具转换成om模型。
    图1 fake_quant模型
  • 部署模型文件:ONNX格式的模型文件,模型名中包含deploy,经过ATC转换工具转换后可部署到在昇腾AI处理器
    以INT8量化为例,deploy模型由于已经将权重等转换成为了INT8, INT32类型, 因此不能在ONNX Runtime环境上执行推理计算。如下图所示,deploy模型的AscendQuant层将Float32的输入数据量化为INT8,作为卷积层的输入,权重也是使用INT8数据类型作为计算,在deploy模型中的卷积层的计算是基于INT8,INT32数据类型的,输出为INT32数据类型经过AscendDeQuant层转换成Float32数据类型传输给下一个网络层。
    图2 deploy模型

重新执行量化感知训练时,该接口输出的上述文件将会被覆盖。

调用示例

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
import amct_pytorch as amct
# 建立待量化的网络图结构
model = build_model()
model.load_state_dict(torch.load(state_dict_path))
input_data = tuple([torch.randn(input_shape)])
# 训练量化retrain模型,训练量化因子
train_model(quant_retrain_model, input_batch)
# 推理量化retrain模型,导出量化因子
infer_model(quant_retrain_model, input_batch)
 
# 插入量化API,将量化感知训练的模型存为onnx文件
amct.save_quant_retrain_model(
               config_json_file,
               model, 
               record_file,
               input_data,
               input_names=['input'],
               output_names=['output'],
               dynamic_axes={'input':{0: 'batch_size'},
                             'output':{0: 'batch_size'}})
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词