量化配置参数说明
作用 |
该层是否进行量化感知训练。 |
---|---|
类型 |
bool |
取值范围 |
true或false |
参数说明 |
|
推荐配置 |
true |
必选或可选 |
可选 |
作用 |
该层数据量化配置。 |
---|---|
类型 |
dict |
取值范围 |
- |
参数说明 |
包含如下参数:
|
推荐配置 |
- |
必选或可选 |
可选 |
作用 |
该层权重量化配置。 |
---|---|
类型 |
dict |
取值范围 |
- |
参数说明 |
包含如下参数:
|
推荐配置 |
- |
必选或可选 |
可选 |
作用 |
该层选择使用的量化算法。 |
---|---|
类型 |
string |
取值范围 |
- |
参数说明 |
|
推荐配置 |
数据量化使用ulq_retrain,权重量化使用arq_retrain。 |
必选或可选 |
可选 |
作用 |
是否对每个channel采用不同的量化因子。 |
---|---|
类型 |
bool |
取值范围 |
true或false |
参数说明 |
|
推荐配置 |
true |
必选或可选 |
可选 |
作用 |
量化使用的batch数量。 |
---|---|
类型 |
int |
取值范围 |
大于0 |
参数说明 |
如果不配置,则使用默认值1,建议校准集图片数量不超过50张,根据batch的大小batch_size计算相应的batch_num数值。 batch_num*batch_size为量化使用的校准集图片数量。 其中batch_size为每个batch所用的图片数量。 |
推荐配置 |
1 |
必选或可选 |
可选 |
作用 |
设置数据量化算法下限的开关。 |
---|---|
类型 |
bool |
取值范围 |
true或false |
参数说明 |
|
推荐配置 |
不选此项 |
必选或可选 |
可选 |
作用 |
数据量化算法上限。 |
---|---|
类型 |
float |
取值范围 |
clip_max>0 根据不同层activation的数据分布找到最大值max,推荐取值范围为:0.3*max~1.7*max |
参数说明 |
截断上下限数据量化算法,如果选择此项则固定算法截断上限。 如果不选此项,通过ifmr算法学习获取上限。 |
推荐配置 |
不选此项 |
必选或可选 |
可选 |
作用 |
数据量化算法下限。 |
---|---|
类型 |
float |
取值范围 |
clip_min<0 根据不同层activation的数据分布找到最小值min,推荐取值范围为:0.3*min~1.7*min |
参数说明 |
截断上下限数据量化算法,如果选择此项则固定算法截断下限。 如果不选此项,通过ifmr算法学习获取下限。 |
推荐配置 |
不选此项 |
必选或可选 |
可选 |
作用 |
量化位宽的类型。 |
---|---|
类型 |
string |
取值范围 |
当前只支持INT8,默认为INT8 |
参数说明 |
量化时用于选择是量化位宽。 |
推荐配置 |
- |
必选或可选 |
可选 |