单算子API执行
基本原理
自定义算子编译部署后,会自动生成单算子API,可以直接在应用程序中调用。
算子API的形式一般定义为“两段式接口”,形如:
aclnnStatus aclnnXxxGetWorkspaceSize(const aclTensor *src, ..., aclTensor *out, ..., uint64_t workspaceSize, aclOpExecutor **executor); aclnnStatus aclnnXxx(void* workspace, int64 workspaceSize, aclOpExecutor* executor, aclrtStream stream);
其中aclnnXxxGetWorkspaceSize为第一段接口,主要用于计算本次API调用计算过程中需要多少的workspace内存。获取到本次API计算需要的workspace大小后,按照workspaceSize大小申请Device侧内存,然后调用第二段接口aclnnXxx执行计算。
前置步骤
- 参考基于msopgen工具创建算子工程完成算子工程的创建,参考kernel侧算子实现完成kernel侧实现的相关准备,参考host侧算子实现完成host侧实现相关准备。
- 参考算子编译部署完成算子的编译部署,编译部署时需要开启算子的二进制编译功能:修改算子工程中的编译配置项文件CMakePresets.json,将ENABLE_BINARY_PACKAGE设置为True。编译部署时可将算子的二进制部署到当前环境,便于后续算子的调用。
"ENABLE_BINARY_PACKAGE": { "type": "BOOL", "value": "True" },
- 检查API执行需要的头文件和库文件是否自动生成,算子工程build_out/auto_gen目录下会自动生成以下文件
├── aclnn_Xxx.cpp // 自动生成的单算子API执行接口实现文件 ├── aclnn_Xxx.h // 自动生成的单算子API执行接口头文件 ├── ...
准备验证代码工程
代码工程目录结构如下,您可以单击LINK,获取样例工程的完整样例:
├──input // 存放脚本生成的输入数据目录 ├──output // 存放算子运行输出数据和真值数据的目录 ├── inc // 头文件目录 │ ├── common.h // 声明公共方法类,用于读取二进制文件 │ ├── operator_desc.h // 算子描述声明文件,包含算子输入/输出,算子类型以及输入描述与输出描述 │ ├── op_runner.h // 算子运行相关信息声明文件,包含算子输入/输出个数,输入/输出大小等 ├── src │ ├── CMakeLists.txt // 编译规则文件 │ ├── common.cpp // 公共函数,读取二进制文件函数的实现文件 │ ├── main.cpp // 单算子调用应用的入口 │ ├── operator_desc.cpp // 构造算子的输入与输出描述 │ ├── op_runner.cpp // 单算子调用主体流程实现文件 ├── scripts │ ├── verify_result.py // 真值对比文件 │ ├── gen_data.py // 输入数据和真值数据生成脚本文件
下文将重点介绍和单算子调用流程相关的main.cpp、op_runner.cpp文件、CMakeLists.txt文件如何编写,其他文件请自行参考。
单算子调用流程
单算子API执行流程如下:
本节以AddCustom自定义算子调用为例,介绍如何编写算子调用的代码逻辑。其他算子的调用逻辑与Add算子大致一样,请根据实际情况自行修改代码。
以下是关键步骤的代码示例,不可以直接拷贝编译运行,仅供参考,调用接口后,需增加异常处理的分支,并记录报错日志、提示日志,此处不一一列举。
因为单算子API执行方式,会自动在编译工程的build_out/autogen目录下生成.cpp和.h,编写单算子的调用代码时,要包含自动生成的单算子API执行接口头文件。本样例中,示例如下:
#include "aclnn_add_custom.h"
// 1.AscendCL初始化 aclRet = aclInit(NULL); // 2.运行管理资源申请 int deviceId = 0; aclRet = aclrtSetDevice(deviceid); // 获取软件栈的运行模式,不同运行模式影响后续的接口调用流程(例如是否进行数据传输等) aclrtRunMode runMode; bool g_isDevice = false; aclError aclRet = aclrtGetRunMode(&runMode); g_isDevice = (runMode == ACL_DEVICE); // 3.申请内存存放算子的输入输出 // ...... // 4.传输数据 if (aclrtMemcpy(devInputs_[i], size, hostInputs_[i], size, kind) != ACL_SUCCESS) { return false; } // 5.计算workspace大小并申请内存 size_t workspaceSize = 0; aclOpExecutor *handle = nullptr; auto ret = aclnnAddCustomGetWorkspaceSize(inputTensor_[0], inputTensor_[1], outputTensor_[0], &workspaceSize, &handle); // ... void *workspace = nullptr; if (workspaceSize != 0) { if (aclrtMalloc(&workspace, workspaceSize, ACL_MEM_MALLOC_NORMAL_ONLY) != ACL_SUCCESS) { ERROR_LOG("Malloc device memory failed"); } } // 6.执行算子 if (aclnnAddCustom(workspace, workspaceSize, handle, stream) != ACL_SUCCESS) { (void)aclrtDestroyStream(stream); ERROR_LOG("Execute Operator failed. error code is %d", static_cast<int32_t>(ret)); return false; } // 7.同步等待 aclrtSynchronizeStream(stream); // 8.处理执行算子后的输出数据,例如在屏幕上显示、写入文件等,由用户根据实际情况自行实现 // ...... // 9.释放运行管理资源 aclRet = aclrtResetDevice(deviceid); // .... // 10.AscendCL去初始化 aclRet = aclFinalize();
CMakeLists文件
因为单算子API执行方式,会自动在编译工程的build_out/autogen目录下生成.cpp和.h。所以在编译时,需要在头文件的搜索路径include_directories中增加build_out/autogen,便于找到该头文件;在生成可执行文件规则add_executable中增加aclnn_add_custom.cpp,便于对单算子API执行的接口文件进行编译,同时需要链接nnopbase链接库。
- 设置AUTO_GEN_PATH变量为算子工程的build_out/autogen目录,以下样例仅为参考,请根据算子工程的实际目录位置进行设置。
set(AUTO_GEN_PATH "../../AddCustom/build_out/autogen")
- 在头文件的搜索路径include_directories中增加算子工程的build_out/autogen目录。
include_directories( ${INC_PATH}/runtime/include ${INC_PATH}/atc/include ../inc ${AUTO_GEN_PATH} )
- 在生成可执行文件规则add_executable中增加自动生成的单算子API调用实现文件,本样例中文件名为aclnn_add_custom.cpp。
add_executable(execute_add_op ${AUTO_GEN_PATH}/aclnn_add_custom.cpp operator_desc.cpp op_runner.cpp main.cpp common.cpp )
- 链接nnopbase链接库
target_link_libraries(execute_add_op ascendcl acl_op_compiler nnopbase stdc++ )
生成测试数据
在样例工程目录下,执行如下命令:
python3 scripts/gen_data.py
会在工程目录下input目录中生成两个shape为(8,2048),数据类型为float16的数据文件input_0.bin与input_1.bin,用于进行AddCustom算子的验证。
代码样例如下:
import numpy as np a = np.random.randint(100, size=(8, 2048,)).astype(np.float16) b = np.random.randint(100, size=(8, 2048,)).astype(np.float16) a.tofile('input_0.bin') b.tofile('input_1.bin')
编译与运行
- 开发环境上,设置环境变量,配置AscendCL单算子验证程序编译依赖的头文件与库文件路径,如下为设置环境变量的示例。${INSTALL_DIR}表示CANN软件安装目录,例如,$HOME/Ascend/ascend-toolkit/latest。{arch-os}为运行环境的架构和操作系统,arch表示操作系统架构,os表示操作系统,例如x86_64-linux。
export DDK_PATH=${INSTALL_DIR} export NPU_HOST_LIB=${INSTALL_DIR}/{arch-os}/lib64
- 编译样例工程,生成单算子验证可执行文件。
- 执行单算子
- 以运行用户(例如HwHiAiUser)拷贝开发环境中样例工程run目录下的out文件夹到运行环境任一目录。
- 在运行环境中,执行execute_add_op文件,验证单算子模型文件。
chmod +x execute_add_op ./execute_add_op
会有如下屏显信息:
[INFO] Set device[0] success [INFO] Get RunMode[1] success [INFO] Init resource success [INFO] Set input success [INFO] Copy input[0] success [INFO] Copy input[1] success [INFO] Create stream success [INFO] Execute aclnnAddCustomGetWorkspaceSize success, workspace size 0 [INFO] Execute aclnnAddCustom success [INFO] Synchronize stream success [INFO] Copy output[0] success [INFO] Write output success [INFO] Run op success [INFO] Reset Device success [INFO] Destory resource success
如果有Run op success,表明执行成功,会在output目录下生成输出文件output_0.bin。
- 比较真值文件
python3 scripts/verify_result.py output/output_z.bin output/golden.bin
会有如下屏显信息:test pass
可见,AddCustom算子验证结果正确。