aclStft
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品 。
接口原型
每个算子分为两段式接口,必须先调用“aclStftGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclStft”接口执行计算。
aclnnStatus aclStftGetWorkspaceSize(const aclTensor *self, const aclTensor *windowOptional, aclTensor *out, int64_t nFft, int64_t hopLength, int64_t winLength, bool normalized, bool onesided, bool returnComplex, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclStft(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
功能描述
- 算子功能: 计算输入在滑动窗口内的傅里叶变换。
- 计算公式:
其中,为FFT的频点;为滑动窗口的index;为1维或2维tensor,当是1维时,其为一个时序采样序列,当是2维时,其为多个时序采样序列;为滑动窗口大小;为1维tensor,是STFT的窗函数(例如hann_window),其长度为;为旋转因子。
aclStftGetWorkspaceSize
参数说明:
self(aclTensor*,计算输入):待计算的输入,要求是一个1D/2D的Tensor,shape为(L)/(B, L),其中,L为时序采样序列的长度,B为时序采样序列的个数。数据类型支持FLOAT32、DOUBLE、COMPLEX64、COMPLEX128,支持非连续的Tensor,数据格式要求为ND。
windowOptional(aclTensor*,计算输入):要求是一个1D的Tensor,shape为(winLength),winLength为STFT窗函数的长度。数据类型支持FLOAT32、DOUBLE、COMPLEX64、COMPLEX128,且数据类型与self保持一致,数据格式要求为ND。
nFft(int64_t,计算输入):Host侧的int,FFT的点数(大于0)。
hopLength(int64_t,计算输入):Host侧的int,滑动窗口的间隔(大于0)。
winLength(int64_t,计算输入):Host侧的int,window的大小(大于0)。
normalized(bool,计算输入):Host侧的bool,是否对傅里叶变换结果进行标准化。
onesided(bool,计算输入):Host侧的bool,是否返回全部的结果或者一半结果。
returnComplex(bool,计算输入):Host侧的bool,确认返回值是complex tensor或者是实部、虚部分开的tensor。
workspaceSize(uint64_t*,出参):Device侧的整型,返回需要在Device侧申请的workspace大小。
executor(aclOpExecutor**,出参):Device侧的aclOpExecutor,返回op执行器,包含了算子计算流程。
out(aclTensor*,计算输出):self在window内的傅里叶变换结果,要求是一个2D/3D/4D的Tensor,数据类型支持FLOAT32、DOUBLE、COMPLEX64、COMPLEX128,支持非连续的Tensor,数据格式要求为ND。
- 如果returnComplex=True,out是shape为[N, T]或者[B, N, T]的复数tensor。
- 如果returnComplex=False,out是shape为[N, T, 2]或者[B, N, T, 2]的实数tensor。
其中,N=nFft(onesided=False)或者(nFft // 2 + 1)(onesided=True); T是滑动窗口的个数,T = (L - nFft) // hopLength + 1。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
返回161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的self、out是空指针 返回161002(ACLNN_ERR_PARAM_INVALID):1. self的格式不在支持的范围之内; 2. self、windowOptional、out的数据类型不在平台的支持范围之内; 3. nFft、hopLength、winLength输入无效值; 4. self、windowOptional、out的维度不在支持的范围之内;
aclStft
参数说明:
workspace(void*,入参):在Device侧申请的workspace内存地址。
workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclStftGetWorkspaceSize获取。
executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
返回值:
返回aclnnStatus状态码,具体参见aclnn返回码。
约束与限制
- 输入self与PyTorch接口的不同:PyTorch接口的输入self为原始输入;aclStftGetWorkspaceSize的入参self是原始输入经过前端PyTorch补pad后得到的结果;
- PyTorch接口调用STFT时,self数据类型仅支持FLOAT32、DOUBLE;
- nFft <= L;
- winLength <= nFft;
- 当normalized=True时,
- self、windowOptional、returnComplex以及out数据类型对应关系如下
Dtype | FLOAT32, FLOAT32 | DOUBLE, DOUBLE | COMPLEX64, COMPLEX64 | COMPLEX128, COMPLEX128 |
---|---|---|---|---|
returnComplex=True | COMPLEX64 | COMPLEX128 | COMPLEX64 | COMPLEX128 |
returnComplex=False | FLOAT32 | DOUBLE | FLOAT32 | DOUBLE |
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/acl_stft.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考acl对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {5};
std::vector<int64_t> windowShape = {4};
std::vector<int64_t> outShape = {3, 1, 2};
void* selfDeviceAddr = nullptr;
void* windowDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* window = nullptr;
aclTensor* out = nullptr;
std::vector<float> selfHostData = {1, 6, 8, 5, 7};
std::vector<float> windowHostData = {1, 1, 1, 1};
std::vector<float> outHostData = {0, 0, 0, 0, 0, 0};
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
// 创建window aclTensor
ret = CreateAclTensor(windowHostData, windowShape, &windowDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
int n_fft = 4;
int hop_length = 2;
int win_length = 4;
bool normalized = false;
bool onesided = true;
bool returnComplex = false;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclStft第一段接口
ret = aclStftGetWorkspaceSize(self, window, out, n_fft, hop_length, win_length, normalized, onesided, returnComplex, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclStftGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclStft第二段接口
ret = aclStft(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclStft failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyTensor(window);
aclDestroyTensor(out);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(selfDeviceAddr);
aclrtFree(windowDeviceAddr);
aclrtFree(outDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}