aclnnApplyRotaryPosEmb
支持的产品型号
Atlas 推理系列产品 。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 。
接口原型
每个算子分为两段式接口,必须先调用“aclnnApplyRotaryPosEmbGetWorkspaceSize”接口获取入参并根据流程计算所需workspace大小,再调用“aclnnApplyRotaryPosEmb”接口执行计算。
aclnnStatus aclnnApplyRotaryPosEmbGetWorkspaceSize(aclTensor *queryRef, aclTensor *keyRef, const aclTensor *cos, const aclTensor *sin, int64_t layoutOptional, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnApplyRotaryPosEmb(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
- 算子功能:推理网络为了提升性能,将query和key两路算子融合成一路。执行旋转位置编码计算,计算结果执行原地更新。
- 计算公式:
aclnnApplyRotaryPosEmbGetWorkspaceSize
参数说明:
- queryRef(aclTensor*,计算输入):表示要执行旋转位置编码的第一个张量,公式中的
query
,Device侧的aclTensor。支持非连续的Tensor,数据格式支持ND,维度为4维。计算结果原地更新。Atlas 推理系列产品 :数据类型支持FLOAT16、FLOAT32。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持BFLOAT16、FLOAT16、FLOAT32。
- keyRef(aclTensor*,计算输入):表示要执行旋转位置编码的第二个张量,公式中的
key
,Device侧的aclTensor。支持非连续的Tensor,数据格式支持ND,维度为4维。Atlas 推理系列产品 :数据类型支持FLOAT16、FLOAT32。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持BFLOAT16、FLOAT16、FLOAT32。
- cos(aclTensor*,计算输入):表示参与计算的位置编码张量,公式中的
cos
,Device侧的aclTensor。支持非连续的Tensor,数据格式支持ND,维度为4维。Atlas 推理系列产品 :数据类型支持FLOAT16、FLOAT32。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持BFLOAT16、FLOAT16、FLOAT32。
- sin(aclTensor*,计算输入):表示参与计算的位置编码张量,公式中的
sin
,Device侧的aclTensor,支持非连续的Tensor,数据格式支持ND,维度为4维。Atlas 推理系列产品 :数据类型支持FLOAT16、FLOAT32。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持BFLOAT16、FLOAT16、FLOAT32。
- layoutOptional(int64_t,计算输入):表示输入Tensor的布局格式,数据类型INT64,目前只支持1,代表格式为BSND的4维Tensor。
- workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
- queryRef(aclTensor*,计算输入):表示要执行旋转位置编码的第一个张量,公式中的
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,若出现以下错误码,则对应原因为: - 返回161001(ACLNN_ERR_PARAM_NULLPTR):1.传入的queryRef、keyRef、cos或sin是空指针。 - 返回161002(ACLNN_ERR_PARAM_INVALID):1.传入的queryRef、keyRef、cos、sin的数据类型、数据格式不在支持的范围内或shape不匹配。 2.传入的layoutOptional参数不在支持范围内。
aclnnApplyRotaryPosEmb
参数说明:
- workspace(void*,入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnApplyRotaryPosEmbGetWorkspaceSize获取。
- executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
- stream(aclrtStream,入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
输入张量queryRef、keyRef、cos、sin只支持4维的shape,layoutOptional只支持1
输入张量queryRef、keyRef、cos、sin 的dtype必须相同,且4个输入shape的前2维和最后一维必须相等,cos和sin的shape第3维必须等于1,输入shape最后一维必须等于128
输入queryRef的shape用(q_b, q_s, q_n, q_d)表示,keyRef shape用(q_b, q_s, k_n, q_d)表示,cos和sin shape用(q_b, q_s, 1, q_d)表示。其中,b表示batch_size,s表示seq_length,n表示head_num,d表示head_dim。
- 当输入是BFLOAT16时,cast表示为1,castSize为4,DtypeSize为2
- 当输入是FLOAT16或FLOAT32时,cast表示为0,castSize = DtypeSize(FLOAT16时为2,FLOAT32时为4)
需要使用的UB空间大小计算方式:
ub_required = (q_n + k_n) * 128 * castSize * 2 + 128 * DtypeSize * 4 + (q_n + k_n) * 128 * castSize + (q_n + k_n) * 128 * castSize * 2 + cast * (128 * 4 * 2)
,当计算出ub_required
的大小超过当前AI处理器的UB空间总大小时,不支持使用该融合算子不支持空tensor场景
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include "acl/acl.h"
#include "aclnnop/aclnn_apply_rotary_pos_emb.h"
#include <iostream>
#include <vector>
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. 固定写法,device/stream初始化, 参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口定义构造
std::vector<int64_t> queryShape = {1, 1, 1, 128};
std::vector<int64_t> keyShape = {1, 1, 1, 128};
std::vector<int64_t> cosShape = {1, 1, 1, 128};
std::vector<int64_t> sinShape = {1, 1, 1, 128};
int64_t layout = 1;
void* queryDeviceAddr = nullptr;
void* keyDeviceAddr = nullptr;
void* cosDeviceAddr = nullptr;
void* sinDeviceAddr = nullptr;
aclTensor* query = nullptr;
aclTensor* key = nullptr;
aclTensor* cos = nullptr;
aclTensor* sin = nullptr;
std::vector<float> queryHostData = {74, 54, 84, 125, 23, 78, 37, 72, 27, 98, 34, 107, 29, 23, 54, 60, 70, 49,
119, 54, 29, 54, 41, 99, 27, 62, 5, 46, 108, 39, 24, 123, 33, 82, 6, 40, 88,
24, 6, 116, 38, 119, 110, 5, 30, 79, 87, 18, 29, 100, 90, 24, 21, 93, 63, 68,
34, 112, 119, 48, 74, 43, 85, 64, 14, 49, 128, 59, 18, 37, 123, 76, 14, 63, 10,
39, 107, 124, 79, 16, 17, 76, 80, 47, 90, 41, 58, 82, 75, 80, 69, 37, 74, 36, 54,
26, 32, 54, 13, 100, 105, 15, 13, 69, 122, 26, 94, 59, 29, 14, 60, 8, 24, 17, 45,
33, 107, 122, 63, 111, 75, 128, 68, 31, 105, 6, 82, 99};
std::vector<float> keyHostData = {112, 32, 66, 114, 69, 31, 117, 122, 77, 57, 78, 119, 115, 25, 54, 27, 122, 65, 15, 85,
33, 16, 36, 6, 95, 15, 43, 6, 66, 91, 14, 101, 78, 51, 110, 74, 56, 30, 127, 61, 53, 29,
32, 65, 114, 77, 26, 116, 89, 38, 75, 14, 96, 91, 87, 34, 25, 42, 57, 26, 51, 43, 23, 42,
40, 17, 98, 117, 53, 75, 68, 75, 38, 41, 115, 76, 67, 22, 76, 10, 24, 46, 85, 54, 61, 114,
10, 59, 6, 123, 58, 10, 115, 9, 13, 58, 66, 120, 23, 30, 83, 13, 11, 76, 18, 82, 57, 4,
117, 105, 8, 73, 127, 5, 91, 56, 12, 125, 20, 3, 104, 40, 46, 18, 89, 63, 99, 104};
std::vector<float> cosHostData = {41, 37, 17, 25, 49, 25, 22, 24, 110, 120, 107, 3, 82, 66, 75, 86, 85, 115, 110, 56, 52,
39, 86, 23, 36, 71, 20, 73, 113, 25, 114, 56, 125, 80, 95, 82, 31, 63, 99, 62, 23, 55, 30,
99, 42, 121, 15, 24, 97, 87, 81, 67, 43, 21, 13, 9, 33, 29, 117, 10, 114, 61, 98, 15, 78,
108, 48, 97, 1, 3, 78, 109, 57, 46, 47, 56, 50, 66, 81, 77, 17, 128, 68, 121, 47, 91, 114,
125, 51, 108, 31, 15, 47, 78, 109, 115, 113, 26, 53, 97, 1, 111, 103, 58, 106, 68, 11,
104, 22, 79, 61, 127, 86, 39, 33, 123, 102, 39, 64, 41, 119, 120, 61, 29, 94, 68, 36, 12};
std::vector<float> sinHostData = {46, 56, 56, 101, 66, 10, 96, 16, 86, 57, 102, 66, 12, 105, 76, 58, 90, 6, 79, 128, 126,
82, 41, 3, 45, 7, 66, 4, 46, 22, 31, 26, 37, 63, 97, 84, 91, 90, 47, 77, 90, 34, 41, 83,
91, 108, 120, 13, 90, 32, 85, 37, 119, 31, 51, 82, 122, 125, 7, 116, 121, 108, 38, 56,
100, 20, 97, 119, 10, 4, 53, 13, 46, 82, 103, 119, 124, 80, 23, 67, 78, 56, 119, 122, 40,
58, 128, 27, 30, 52, 71, 42, 123, 69, 4, 5, 116, 97, 38, 107, 8, 4, 65, 120, 40, 22, 60,
44, 48, 66, 68, 125, 4, 93, 112, 112, 113, 90, 94, 23, 104, 39, 85, 84, 64, 128, 96, 119};
// 创建query aclTensor
ret = CreateAclTensor(queryHostData, queryShape, &queryDeviceAddr, aclDataType::ACL_FLOAT, &query);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建key aclTensor
ret = CreateAclTensor(keyHostData, keyShape, &keyDeviceAddr, aclDataType::ACL_FLOAT, &key);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建cos aclTensor
ret = CreateAclTensor(cosHostData, cosShape, &cosDeviceAddr, aclDataType::ACL_FLOAT, &cos);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建sin aclTensor
ret = CreateAclTensor(sinHostData, sinShape, &sinDeviceAddr, aclDataType::ACL_FLOAT, &sin);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnApplyRotaryPosEmb第一段接口
ret = aclnnApplyRotaryPosEmbGetWorkspaceSize(query, key, cos, sin, layout, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnApplyRotaryPosEmbGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnApplyRotaryPosEmb第二段接口
ret = aclnnApplyRotaryPosEmb(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnApplyRotaryPosEmb failed. ERROR: %d\n", ret); return ret);
// 4. 固定写法,同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(queryShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), queryDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %hhu\n", i, resultData[i]);
}
auto size1 = GetShapeSize(keyShape);
std::vector<float> resultData1(size, 0);
ret = aclrtMemcpy(resultData1.data(), resultData1.size() * sizeof(resultData1[0]), keyDeviceAddr, size1 * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %hhu\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(query);
aclDestroyTensor(key);
aclDestroyTensor(cos);
aclDestroyTensor(sin);
// 7. 释放device 资源
aclrtFree(queryDeviceAddr);
aclrtFree(keyDeviceAddr);
aclrtFree(cosDeviceAddr);
aclrtFree(sinDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}