下载
中文
注册

aclnnBatchMatMul

支持的产品型号

  • Atlas 推理系列产品
  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnBatchMatMulGetWorkspaceSize”接口获取入参并根据流程计算所需workspace大小,再调用“aclnnBatchMatMul”接口执行计算。

  • aclnnStatus aclnnBatchMatMulGetWorkspaceSize(const aclTensor *self, const aclTensor *mat2, aclTensor *out, int8_t cubeMathType, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnBatchMatMul(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:完成张量self与张量mat2的矩阵乘计算。仅支持三维的Tensor传入。第一维是batch维度,最后两个维度做矩阵乘法。也支持其中一个输入的batch轴为1时做broadcast,见示例。

  • 计算公式:

    out=self@mat2out = self@mat2
  • 示例:

    self的shape是[A, M, K],mat2的shape是[A, K, N],计算输出out的shape是[A, M, N]。第一维相等,后两维做矩阵乘运算。 self的shape是[A, M, K],mat2的shape是[1, K, N],计算输出out的shape是[A, M, N]。B矩阵第一维为1,会broadcast到A,后两维做矩阵乘运算。 self的shape是[1, M, K],mat2的shape是[B, K, N],计算输出out的shape是[B, M, N]。A矩阵第一维为1,会broadcast到B,后两维做矩阵乘运算。

aclnnBatchMatMulGetWorkSpaceSize

  • 参数说明:

    • self(aclTensor*,计算输入):表示矩阵乘的第一个矩阵,公式中的self,Device侧aclTensor。数据类型需要与mat2满足数据类型推导规则(参见互推导关系约束与限制)。数据格式支持ND,shape维度支持3维。支持非连续的Tensor
      • Atlas 训练系列产品Atlas 推理系列产品:数据类型支持FLOAT16、FLOAT32。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32。
    • mat2(aclTensor*,计算输入):表示矩阵乘的第二个矩阵,公式中的mat2,Device侧aclTensor,数据类型需要与self满足数据类型推导规则(参见互推导关系约束与限制)。数据格式支持ND,shape维度支持3维。支持非连续的Tensor。mat2的Reduce维度需要与self的Reduce维度大小相等。
      • Atlas 训练系列产品Atlas 推理系列产品:数据类型支持FLOAT16、FLOAT32。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32。
    • out(aclTensor *,计算输出):表示矩阵乘的输出矩阵,公式中的out,Device侧aclTensor。数据类型需要与self与mat2推导之后的数据类型保持一致(参见互推导关系约束与限制)。数据格式支持ND,shape维度支持3维。
      • Atlas 训练系列产品Atlas 推理系列产品:数据类型支持FLOAT16、FLOAT32。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT32。
    • cubeMathType(INT8,计算输入):用于指定Cube单元的计算逻辑,Host侧的整型。数据类型支持INT8。注意:如果输入的数据类型存在互推导关系,该参数默认对互推导后的数据类型进行处理。支持的枚举值如下:
      • 0:KEEP_DTYPE,保持输入的数据类型进行计算。
        • Atlas 训练系列产品Atlas 推理系列产品:当输入数据类型为FLOAT32时不支持该选项。
      • 1:ALLOW_FP32_DOWN_PRECISION,支持将输入数据降精度计算。
        • Atlas 训练系列产品Atlas 推理系列产品:当输入数据类型为FLOAT32时,会转换为FLOAT16计算。当输入为其他数据类型时不做处理。
        • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:当输入数据类型为FLOAT32时,会转换为HFLOAT32计算。当输入为其他数据类型时不做处理。
      • 2:USE_FP16,支持将输入降精度至FLOAT16计算。
        • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:当输入数据类型为BFLOAT16时不支持该选项。
      • 3:USE_HF32,支持将输入降精度至数据类型HFLOAT32计算。
        • Atlas 训练系列产品Atlas 推理系列产品:不支持该选项。
        • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:当输入数据类型为FLOAT32时,会转换为HFLOAT32计算。当输入为其他数据类型时不支持该选项。
    • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor **,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的self、mat2或out是空指针。
    161002(ACLNN_ERR_PARAM_INVALID):1. self、mat2或out的数据类型不在支持的范围内。
                                     2. self、mat2或out的数据格式不在支持的范围内。
                                     3. self和mat2的第一维度不相等(非broadcast)。
                                     4. self和mat2的维度不是三维。
                                     5. self的最后一维和mat2的倒数第二维不相等。

aclnnBatchMatMul

  • 参数说明:

    • workspace(void *, 入参): 在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小,由第一段接口aclnnBatchMatMulGetWorkSpaceSize获取。
    • executor(aclOpExecutor *, 入参): op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

约束与限制

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:不支持两个输入分别为BFLOAT16和FLOAT16的数据类型推导。不支持两个输入分别为BFLOAT16和FLOAT32的数据类型推导。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_batch_matmul.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请Device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将Host侧数据拷贝到Device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {1, 2, 3};
  std::vector<int64_t> mat2Shape = {1, 3, 4};
  std::vector<int64_t> outShape = {1, 2, 4};
  void* selfDeviceAddr = nullptr;
  void* mat2DeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* mat2 = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> selfHostData = {0, 1, 2, 3, 4, 5};
  std::vector<float> mat2HostData = {1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4};
  std::vector<float> outHostData(8, 0);
  int8_t cubeMathType = 1;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建mat2 aclTensor
  ret = CreateAclTensor(mat2HostData, mat2Shape, &mat2DeviceAddr, aclDataType::ACL_FLOAT, &mat2);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;

  // aclnnBatchMatMul接口调用示例
  // 3. 调用CANN算子库API,需要修改为具体的API名称
  // 调用aclnnBatchMatMul第一段接口
  ret = aclnnBatchMatMulGetWorkspaceSize(self, mat2, out, cubeMathType, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchMatMulGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnBatchMatMul第二段接口
  ret = aclnnBatchMatMul(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnBatchMatMul failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将Device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(mat2);
  aclDestroyTensor(out);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(outDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}