aclnnCalculateMatmulWeightSizeV2
支持的产品型号
Atlas 推理系列产品 Atlas A2 训练系列产品/Atlas 800I A2 推理产品
接口原型
aclnnStatus aclnnCalculateMatmulWeightSizeV2(const aclIntArray *tensorShape, aclDataType dataType, uint64_t *weightTensorSize)
功能描述
算子功能: 在Matmul算子ND格式输入下,计算如果要转换到NZ格式下需要占用的空间大小(单位为元素个数),仅支持Float16、INT8数据类型,该接口仅仅用于判断对weight Tensor进行预处理需要使用多少size才可使Matmul算子执行性能最优。 例如:
输入【510, 510】Float16:该函数出于性能角度考虑,会将shape变化为【512,512】 因此函数会将引用输入修改为262144
输入【510, 270】INT8:该函数出于性能角度考虑,会将shape变化为【512,288】 因此函数会将引用输入修改为147456
计算公式
aclnnCalculateMatmulWeightSizeV2
参数说明:
- tensorShape(aclIntArray*, 计算输入):用于表达该次Matmul载入权重矩阵的Shape,输入tensor shape支持2-6维,即(batch, n, k), 其中batch轴支持0-4维。
- weightDtype(aclDataType, 计算输入):weight的Dtype,支持Float16、INT8。
- weightTensorSize(uint64_t *, 计算输出):转换为NZ格式所占用的空间大小(单位为元素个数)。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
161001(ACLNN_ERR_PARAM_NULLPTR):1. 输入是空指针。 161002(ACLNN_ERR_PARAM_INVALID):原因有: - 不支持空Tensor输入 - 输入shape的维度不满足要求 - 输入的数据类型不满足要求 361001(ACLNN_ERR_RUNTIME_ERROR): SocVersion不支持。
约束与限制
无
调用示例
Atlas 推理系列产品 :tensorShape为2维的场景示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。- tensorShape为多维(3-6维)的场景示例代码请参考aclnnQuantMatmulV3。
- 伪量化有aclnnWeightQuantBatchMatmulV2和aclnnWeightQuantBatchMatmulV3接口, 这里以aclnnWeightQuantBatchMatmulV2为例
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_cast.h"
#include "aclnnop/aclnn_weight_quant_batch_matmul_v2.h"
#include "aclnnop/aclnn_trans_matmul_weight.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensorWeight(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = static_cast<uint64_t>(GetShapeSize(shape));
const aclIntArray* mat2Size = aclCreateIntArray(shape.data(), shape.size());
auto ret = aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSizeV2 failed. ERROR: %d\n", ret); return ret);
size *= sizeof(T);
// 调用aclrtMalloc申请device侧内存
ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
std::vector<int64_t> storageShape;
storageShape.push_back(GetShapeSize(shape));
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
storageShape.data(), storageShape.size(), *deviceAddr);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> xShape = {16, 32};
std::vector<int64_t> weightShape = {16, 32};
std::vector<int64_t> yShape = {16, 16};
void* xDeviceAddr = nullptr;
void* weightDeviceAddr = nullptr;
void* yDeviceAddr = nullptr;
aclTensor* x = nullptr;
aclTensor* weight = nullptr;
aclTensor* y = nullptr;
std::vector<float> xHostData(512, 1);
std::vector<int8_t> weightHostData(512, 1);
std::vector<float> yHostData(256, 0);
std::vector<int64_t> antiquantScaleShape = {16};
void* antiquantScaleDeviceAddr = nullptr;
aclTensor* antiquantScale = nullptr;
std::vector<float> antiquantScaleHostData(16, 1);
// 创建x aclTensor
ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_FLOAT, &x);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建weight aclTensor
ret = CreateAclTensorWeight(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_INT8, &weight);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建y aclTensor
ret = CreateAclTensor(yHostData, yShape, &yDeviceAddr, aclDataType::ACL_FLOAT, &y);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建antiquantScale aclTensor
ret = CreateAclTensor(antiquantScaleHostData, antiquantScaleShape, &antiquantScaleDeviceAddr, aclDataType::ACL_FLOAT, &antiquantScale);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建xFp16 aclTensor
void* xFp16DeviceAddr = nullptr;
aclTensor* xFp16 = nullptr;
ret = CreateAclTensor(xHostData, xShape, &xFp16DeviceAddr, aclDataType::ACL_FLOAT16, &xFp16);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建antiquantScale aclTensor
void* antiquantScaleFp16DeviceAddr = nullptr;
aclTensor* antiquantScaleFp16 = nullptr;
ret = CreateAclTensor(antiquantScaleHostData, antiquantScaleShape, &antiquantScaleFp16DeviceAddr, aclDataType::ACL_FLOAT16, &antiquantScaleFp16);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建yFp16 aclTensor
void* yFp16DeviceAddr = nullptr;
aclTensor* yFp16 = nullptr;
ret = CreateAclTensor(yHostData, yShape, &yFp16DeviceAddr, aclDataType::ACL_FLOAT16, &yFp16);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
// 调用TransWeight
ret = aclnnTransMatmulWeightGetWorkspaceSize(weight, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeightGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnTransMatmulWeight第二段接口
ret = aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeight failed. ERROR: %d\n", ret); return ret);
workspaceSize = 0;
// 调用cast生成FP16的输入
ret = aclnnCastGetWorkspaceSize(x, aclDataType::ACL_FLOAT16, xFp16, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize0 failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
ret = aclnnCast(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast0 failed. ERROR: %d\n", ret); return ret);
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
ret = aclnnCastGetWorkspaceSize(antiquantScale, aclDataType::ACL_FLOAT16, antiquantScaleFp16, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize1 failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
ret = aclnnCast(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast1 failed. ERROR: %d\n", ret); return ret);
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 调用aclnnWeightQuantBatchMatmulV2第一段接口
ret = aclnnWeightQuantBatchMatmulV2GetWorkspaceSize(xFp16, weight, antiquantScaleFp16, nullptr, nullptr, nullptr, nullptr, 0, yFp16, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnWeightQuantBatchMatmulV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnWeightQuantBatchMatmulV2第二段接口
ret = aclnnWeightQuantBatchMatmulV2(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnWeightQuantBatchMatmulV2 failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 将输出转为FP32
ret = aclnnCastGetWorkspaceSize(yFp16, aclDataType::ACL_FLOAT, y, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCastGetWorkspaceSize2 failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
ret = aclnnCast(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCast2 failed. ERROR: %d\n", ret); return ret);
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(yShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), yDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(x);
aclDestroyTensor(weight);
aclDestroyTensor(antiquantScale);
aclDestroyTensor(y);
aclDestroyTensor(xFp16);
aclDestroyTensor(antiquantScaleFp16);
aclDestroyTensor(yFp16);
// 7. 释放device资源
aclrtFree(xDeviceAddr);
aclrtFree(weightDeviceAddr);
aclrtFree(antiquantScaleDeviceAddr);
aclrtFree(yDeviceAddr);
aclrtFree(xFp16DeviceAddr);
aclrtFree(antiquantScaleFp16DeviceAddr);
aclrtFree(yFp16DeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}