aclnnEmbeddingBag
支持的产品型号
Atlas 推理系列产品 。Atlas 训练系列产品 。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 。
接口原型
每个算子分为两段式接口,必须先调用“aclnnEmbeddingBagGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnEmbeddingBag”接口执行计算。
aclnnStatus aclnnEmbeddingBagGetWorkspaceSize(const aclTensor* weight, const aclTensor* indices,const aclTensor* offsets, bool scaleGradByFreq,int64_t mode, bool sparse, const aclTensor* perSampleWeights, bool includeLastOffset, int64_t paddingIdx, aclTensor* output, aclTensor* offset2bag, aclTensor* bagSize, aclTensor* maxIndices, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnEmbeddingBag(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)
功能描述
- 算子功能:根据indices从weight中获得一组被聚合的数,然后根据offsets的偏移和mode指定的聚合模式对获取的数进行max、sum、mean聚合。其余参数则更细化了计算过程的控制。
- shape推导方式如下:
假设:
weight的shape为(numWeight, embeddingDim) indices的shape为(bagIndices, wordsIndices) offsets的shape为(bagOffsets, wordsOffsets)
- 当mode为sum模式:
output的shape 为 includeLastOffset ? (bagOffsets * wordsOffsets - 1, embeddingDim) : (bagOffsets * wordsOffsets, embeddingDim) offset2bag的shape 为 (0,) 或 (bagIndices,) bagSize的shape 为 includeLastOffset ? (bagOffsets - 1) : (bagOffsets,) maxIndices的shape 为 includeLastOffset ? (bagOffsets - 1) : (bagOffsets,)
- 当mode为mean模式:
output的shape 为 includeLastOffset? (bagOffsets * wordsOffsets - 1, embeddingDim) : (bagOffsets * wordsOffsets, embeddingDim) offset2bag的shape 为 (0,) 或 (bagIndices,) bagSize的shape 为 includeLastOffset ? (bagOffsets - 1) : (bagOffsets,) maxIndices的shape 为 includeLastOffset ? (bagOffsets - 1) : (bagOffsets,)
- 当mode为max模式:
output的shape 为 includeLastOffset ? (bagOffsets * wordsOffsets - 1, embeddingDim) : (bagOffsets * wordsOffsets, embeddingDim) offset2bag的shape 为 (0,) 或 (bagIndices,) bagSize的shape 为 includeLastOffset ? (bagOffsets - 1) : (bagOffsets,) maxIndices的shape 为 includeLastOffset ? (bagOffsets * wordsOffsets - 1, embeddingDim) : (bagOffsets * wordsOffsets, embeddingDim)
- 当mode为sum模式:
aclnnEmbeddingBagGetWorkspaceSize
参数说明:
- weight(aclTensor*, 计算输入):词嵌入矩阵,包含所有词的嵌入向量,Device侧的aclTensor,shape支持2维,支持非连续的Tensor,数据格式支持ND。
Atlas 训练系列产品 、Atlas 推理系列产品 :数据类型支持FLOAT、FLOAT16。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持FLOAT、FLOAT16、BFLOAT16。
- indices(aclTensor*, 计算输入):包含索引的张量,指定要从
weight
中提取哪些词的嵌入向量,Device侧的aclTensor。数据类型支持UINT8、INT8、INT16、INT32、INT64,shape支持1-2维。支持非连续的Tensor,数据格式支持ND。 - offsets(aclTensor*, 计算输入): 用于将 indices 分割成多个
bag
的偏移量张量,Device侧的aclTensor。数据类型支持UINT8、INT8、INT16、INT32、INT64。当indices是1维时,offsets的shape支持1维。当indices是2维时,offsets的shape支持1-2维。 - scaleGradByFreq(bool,计算输入): 用于控制是否根据词频缩放梯度,当scaleGradByFreq为true时,会根据词频对梯度进行缩放,当scaleGradByFreq为false时,则不会。
- mode(int64_t, 计算输入):用于控制聚合模式,Host侧的整型。0表示sum聚合模式,1表示mean聚合模式,其他表示max聚合模式。
- sparse(bool, 计算输入):用于控制稀疏模式,Host侧的bool类型。当为false时,表示weight非稀疏矩阵;当为true时,表示weight是稀疏矩阵。
- perSampleWeights(aclTensor*, 计算输入): 指定样本权重,Device侧的aclTensor。shape支持1维,数据类型与weight一致,仅在sum模式下,可以不是nullptr,其他模式必须为nullptr。
Atlas 训练系列产品 、Atlas 推理系列产品 :数据类型支持FLOAT、FLOAT16。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持FLOAT、FLOAT16、BFLOAT16。
- includeLastOffset(bool, 计算输入):控制是否包含最后的偏移,Host侧的bool类型。当为false时,表示不包含最后的偏移;当为true时,表示包含最后的偏移。
- paddingIdx(int64_t, 计算输入): 控制不参与计算的indices,Host侧的整型,取值范围是[-n,n-1],其中n是weigit第一维元素个数。
- output(aclTensor*, 计算输出):词嵌入矩阵聚合后的结果,Device侧的aclTensor。数据类型与weight一致,shape支持2维。支持非连续的Tensor,数据格式支持ND。
Atlas 训练系列产品 、Atlas 推理系列产品 :数据类型支持FLOAT、FLOAT16。Atlas A2 训练系列产品/Atlas 800I A2 推理产品 :数据类型支持FLOAT、FLOAT16、BFLOAT16。
- offset2bag(aclTensor*, 计算输出):
bag
的起始偏移,Device侧的aclTensor。数据类型支持INT32、INT64,且offset2bag的数据类型和indices与offsets中精度高的一致,shape支持0-1维。支持非连续的Tensor,数据格式支持ND。 - bagSize(aclTensor*, 计算输出): 每个
bag
的大小,Device侧的aclTensor。数据类型支持INT32、INT64,且offset2bag的数据类型和indices与offsets中精度高的一致,shape支持1维。支持非连续的Tensor,数据格式支持ND。 - maxIndices(aclTensor*, 计算输出): 当
mode
为max时,词嵌入向量最大值所在的行,Device侧的aclTensor。数据类型支持INT32、INT64,且offset2bag的数据类型和indices与offsets中精度高的一致。当mode
为max时,shape支持2维;当mode
非max时,shape支持1维。支持非连续的Tensor,数据格式支持ND。 - workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
- weight(aclTensor*, 计算输入):词嵌入矩阵,包含所有词的嵌入向量,Device侧的aclTensor,shape支持2维,支持非连续的Tensor,数据格式支持ND。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: 返回161001(ACLNN_ERR_PARAM_NULLPTR): 1. 传入的 weight、indices、offsets、output、offset2bag、bagSize、maxIndices是空指针。 返回161002(ACLNN_ERR_PARAM_INVALID): 1. weight数据类型不在支持范围内,weight维度不是2维。 2. indices数据类型不在支持范围内,indices维度不是1-2维。 3. offsets数据类型不在支持范围内, 在indices是1维时,offsets不是1维;在indices是2维时,offsets大于2维。 4. indices和offsets的数据类型都不是INT32或INT64。 5. perSampleWeights在传入非nullptr的情况下,数据类型与weight不一致, perSampleWeights不是1维,perSampleWeights元素数量与indices不相等, 在非sum模式下,perSampleWeights不是nullptr。 6. paddingIdx超出范围。 7. output数据类型与weight不一致,shape与定义不符。 8. offset2bag、bagSize、maxIndices数据类型和shape与推导得到的数据类型和shape不符。
aclnnEmbeddingBag
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnEmbeddingBagGetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
- fp32场景下weight的第2维应小于15500,fp16/bf16场景下weight的第2维应小于25000;
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_embedding_bag.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init AscendCL failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> weightShape = {3, 3};
std::vector<int64_t> indicesShape = {6};
std::vector<int64_t> offsetsShape = {4};
std::vector<int64_t> perSampleWeightsShape = {6};
std::vector<int64_t> outputShape = {4, 3};
std::vector<int64_t> offset2bagShape = {6};
std::vector<int64_t> bagSizeShape = {4};
std::vector<int64_t> maxIndicesShape = {4};
void* weightDeviceAddr = nullptr;
void* indicesDeviceAddr = nullptr;
void* offsetsDeviceAddr = nullptr;
void* perSampleWeightsDeviceAddr = nullptr;
void* outputDeviceAddr = nullptr;
void* offset2bagDeviceAddr = nullptr;
void* bagSizeDeviceAddr = nullptr;
void* maxIndicesDeviceAddr = nullptr;
aclTensor* weight = nullptr;
aclTensor* indices = nullptr;
aclTensor* offsets = nullptr;
aclTensor* perSampleWeights = nullptr;
aclTensor* output = nullptr;
aclTensor* offset2bag = nullptr;
aclTensor* bagSize = nullptr;
aclTensor* maxIndices = nullptr;
std::vector<float> weightHostData = {1, 1, 1, 1, 1, 1, 1, 1, 1};
std::vector<int64_t> indicesHostData = {1, 2, 0, 2, 2, 1};
std::vector<int64_t> offsetsHostData = {0, 2, 4, 5};
std::vector<float> perSampleWeightsHostData = {1, 1, 1, 1, 1, 1};
std::vector<float> outputHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
std::vector<int64_t> offset2bagHostData = {0, 0, 0, 0, 0, 0};
std::vector<int64_t> bagSizeHostData = {0, 0, 0, 0};
std::vector<int64_t> maxIndicesHostData = {0, 0, 0, 0};
//创建weight aclTensor
ret = CreateAclTensor(weightHostData, weightShape, &weightDeviceAddr, aclDataType::ACL_FLOAT, &weight);
CHECK_RET(ret == ACL_SUCCESS, return ret);
//创建indices aclTensor
ret = CreateAclTensor(indicesHostData, indicesShape, &indicesDeviceAddr, aclDataType::ACL_INT64, &indices);
CHECK_RET(ret == ACL_SUCCESS, return ret);
//创建offsets aclTensor
ret = CreateAclTensor(offsetsHostData, offsetsShape, &offsetsDeviceAddr, aclDataType::ACL_INT64, &offsets);
CHECK_RET(ret == ACL_SUCCESS, return ret);
//创建perSampleWeights aclTensor
ret = CreateAclTensor(perSampleWeightsHostData, perSampleWeightsShape, &perSampleWeightsDeviceAddr, aclDataType::ACL_FLOAT, &perSampleWeights);
CHECK_RET(ret == ACL_SUCCESS, return ret);
//创建output aclTensor
ret = CreateAclTensor(outputHostData, outputShape, &outputDeviceAddr, aclDataType::ACL_FLOAT, &output);
CHECK_RET(ret == ACL_SUCCESS, return ret);
//创建offset2bag aclTensor
ret = CreateAclTensor(offset2bagHostData, offset2bagShape, &offset2bagDeviceAddr, aclDataType::ACL_INT64, &offset2bag);
CHECK_RET(ret == ACL_SUCCESS, return ret);
//创建bagSize aclTensor
ret = CreateAclTensor(bagSizeHostData, bagSizeShape, &bagSizeDeviceAddr, aclDataType::ACL_INT64, &bagSize);
CHECK_RET(ret == ACL_SUCCESS, return ret);
//创建maxIndices aclTensor
ret = CreateAclTensor(maxIndicesHostData, maxIndicesShape, &maxIndicesDeviceAddr, aclDataType::ACL_INT64, &maxIndices);
CHECK_RET(ret == ACL_SUCCESS, return ret);
//非tensor参数
bool scaleGradByFreq = false;
int64_t mode = 0;
bool sparse = false;
bool includeLastOffset = false;
int64_t paddingIdx = 1;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnEmbeddingBag第一段接口
ret = aclnnEmbeddingBagGetWorkspaceSize(weight, indices, offsets, scaleGradByFreq, mode, sparse, perSampleWeights,
includeLastOffset, paddingIdx, output, offset2bag, bagSize, maxIndices, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnEmbeddingBagGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
}
// 调用aclnnEmbeddingBag第二段接口
ret = aclnnEmbeddingBag(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnEmbeddingBag failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto outputSize = GetShapeSize(outputShape);
std::vector<float> outputResultData(outputSize, 0);
ret = aclrtMemcpy(outputResultData.data(), outputResultData.size() * sizeof(outputResultData[0]), outputDeviceAddr,
outputSize * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < outputSize; i++) {
LOG_PRINT("outputResult[%ld] is: %f\n", i, outputResultData[i]);
}
auto offset2bagSize = GetShapeSize(offset2bagShape);
std::vector<int64_t> offset2bagResultData(offset2bagSize, 0);
ret = aclrtMemcpy(offset2bagResultData.data(), offset2bagResultData.size() * sizeof(offset2bagResultData[0]), offset2bagDeviceAddr,
offset2bagSize * sizeof(int64_t), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < offset2bagSize; i++) {
LOG_PRINT("offset2bagResult[%ld] is: %ld\n", i, offset2bagResultData[i]);
}
auto bagSizeSize = GetShapeSize(bagSizeShape);
std::vector<int64_t> bagSizeResultData(bagSizeSize, 0);
ret = aclrtMemcpy(bagSizeResultData.data(), bagSizeResultData.size() * sizeof(bagSizeResultData[0]), bagSizeDeviceAddr,
bagSizeSize * sizeof(int64_t), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < bagSizeSize; i++) {
LOG_PRINT("bagSizeResult[%ld] is: %ld\n", i, bagSizeResultData[i]);
}
auto maxIndicesSize = GetShapeSize(maxIndicesShape);
std::vector<int64_t> maxIndicesResultData(maxIndicesSize, 0);
ret = aclrtMemcpy(maxIndicesResultData.data(), maxIndicesResultData.size() * sizeof(maxIndicesResultData[0]), maxIndicesDeviceAddr,
maxIndicesSize * sizeof(int64_t), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < maxIndicesSize; i++) {
LOG_PRINT("maxIndicesResult[%ld] is: %ld\n", i, maxIndicesResultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(weight);
aclDestroyTensor(indices);
aclDestroyTensor(offsets);
aclDestroyTensor(perSampleWeights);
aclDestroyTensor(output);
aclDestroyTensor(offset2bag);
aclDestroyTensor(bagSize);
aclDestroyTensor(maxIndices);
// 7. 释放device资源, 需要根据具体API的接口定义修改
aclrtFree(weightDeviceAddr);
aclrtFree(indicesDeviceAddr);
aclrtFree(offsetsDeviceAddr);
aclrtFree(perSampleWeightsDeviceAddr);
aclrtFree(outputDeviceAddr);
aclrtFree(offset2bagDeviceAddr);
aclrtFree(bagSizeDeviceAddr);
aclrtFree(maxIndicesDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}