下载
中文
注册

aclnnFakeQuantPerChannelAffineCachemask

支持的产品型号

  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnFakeQuantPerChannelAffineCachemaskGetWorkspaceSize”接口获取入参并根据流程计算所需workspace大小,再调用“aclnnFakeQuantPerChannelAffineCachemask”接口执行计算。

  • aclnnStatus aclnnFakeQuantPerChannelAffineCachemaskGetWorkspaceSize(const aclTensor* self, const aclTensor* scale, const aclTensor* zeroPoint, int64_t axis, int64_t quantMin, int64_t quantMax, aclTensor* out, aclTensor* mask, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnFakeQuantPerChannelAffineCachemask(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, aclrtStream stream)

功能描述

  • 算子功能:对于输入数据self,使用scale和zero_point对输入self在指定轴axis上进行伪量化处理,并根据quant_min和quant_max对伪量化输出进行值域更新,最终返回结果out及对应位置掩码mask。
  • 计算公式:根据算子功能先计算临时变量qval,再计算得出out和mask。qval=Round(std::nearby_int(self/scale)+zero_point)qval = Round(std::nearby\_int(self / scale) + zero\_point) out=(Min(quant_max,Max(quant_min,qval))zero_point)scaleout = (Min(quant\_max, Max(quant\_min, qval)) - zero\_point) * scale mask=(qval>=quant_min)&(qval<=quant_max)mask = (qval >= quant\_min) \& (qval <= quant\_max)

aclnnFakeQuantPerChannelAffineCachemaskGetWorkspaceSize

  • 参数说明:

    • self(aclTensor*, 计算输入):Device侧的aclTensor,数据类型支持FLOAT16、FLOAT32。支持非连续的Tensor数据格式支持ND。
    • scale(aclTensor*, 计算输入):Device侧的aclTensor,表示输入伪量化的缩放系数。数据类型支持FLOAT16、FLOAT32,shape只支持1维。支持非连续的Tensor数据格式支持ND。
    • zeroPoint(aclTensor*, 计算输入):Device侧的aclTensor,表示输入伪量化的零基准参数。数据类型支持INT32,shape只支持1维。支持非连续的Tensor数据格式支持ND。
    • axis(int64_t, 计算输入):Host侧的整型,表示计算维度。
    • quantMin(int64_t, 计算输入):Host侧的整型,表示输入数据伪量化后的最小值。
    • quantMax(int64_t, 计算输入):Host侧的整型,表示输入数据伪量化后的最大值。
    • out(aclTensor*, 计算输出):Device侧的aclTensor,数据类型支持LOAT16、FLOAT32,支持非连续Tensor,数据格式支持ND。
    • mask(aclTensor*, 计算输出):Device侧的aclTensor,数据类型支持BOOL,支持非连续Tensor,数据格式支持ND。
    • workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
  • 返回值: aclnnStatus: 返回状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    返回161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的self、scale、zeroPoint、out或mask是空指针。
    返回161002 (ACLNN_ERR_PARAM_INVALID): 1. self、scale、zeroPoint、out或mask的数据类型不在支持的范围之内。
                                          2. scale或zeroPoint的shape不是1维。
                                          3. scale和zeroPoint的size大小不一致。
                                          4. dim指定的维度不在合法范围[0, self.dim()]内。
                                          5. scale或zeroPoint的size与self在轴axis上的size大小不一致。
                                          6. quantMin大于quantMax。

aclnnFakeQuantPerChannelAffineCachemask

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnFakeQuantPerChannelAffineCachemaskGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值: aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

当前新算子FakeQuantPerChannelAffineCachemask不支持zero_point的float32和float16输入,故先在aclnn接口内部拦截,待算子支持后放开该限制。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_fake_quant_per_channel_affine_cachemask.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shapeSize = 1;
  for (auto i : shape) {
    shapeSize *= i;
  }
  return shapeSize;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
  
  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {1};
  std::vector<int64_t> scaleShape = {1};
  std::vector<int64_t> zeroPointShape = {1};
  std::vector<int64_t> outShape = {1};
  std::vector<int64_t> maskShape = {1};
  void* selfDeviceAddr = nullptr;
  void* scaleDeviceAddr = nullptr;
  void* zeroPointDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  void* maskDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* scale = nullptr;
  aclTensor* zeroPoint = nullptr;
  aclTensor* out = nullptr;
  aclTensor* mask = nullptr;
  std::vector<float> selfHostData{1};
  std::vector<float> scaleHostData{1};
  std::vector<int32_t> zeroPointHostData{1};
  std::vector<float> outHostData{1};
  std::vector<char> maskHostData{1};
  int64_t quantMin = 1;
  int64_t quantMax = 3;
  int axis = 0;
  // 创建 aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(zeroPointHostData, zeroPointShape, &zeroPointDeviceAddr, aclDataType::ACL_INT32, &zeroPoint);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  ret = CreateAclTensor(maskHostData, maskShape, &maskDeviceAddr, aclDataType::ACL_BOOL, &mask);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的Api名称
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnEye第一段接口
  ret = aclnnFakeQuantPerChannelAffineCachemaskGetWorkspaceSize(self, scale, zeroPoint, axis, quantMin, quantMax, out, mask, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnFakeQuantPerChannelAffineCachemaskGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnFakeQuantPerChannelAffineCachemask第二段接口
  ret = aclnnFakeQuantPerChannelAffineCachemask(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnFakeQuantPerChannelAffineCachemask failed. ERROR: %d\n", ret); return ret);
  
  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
  
  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(scale);
  aclDestroyTensor(zeroPoint);
  aclDestroyTensor(out);
  aclDestroyTensor(mask);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(selfDeviceAddr);
  aclrtFree(scaleDeviceAddr);
  aclrtFree(zeroPointDeviceAddr);
  aclrtFree(outDeviceAddr);
  aclrtFree(maskDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}