下载
中文
注册

aclnnMoeFinalizeRoutingV2

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnMoeFinalizeRoutingV2GetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMoeFinalizeRoutingV2”接口执行计算。

  • aclnnStatus aclnnMoeFinalizeRoutingV2GetWorkspaceSize(const aclTensor* expandedX, const aclTensor* expandedRowIdx, const aclTensor* x1Optional, const aclTensor* x2Optional, const aclTensor* biasOptional, const aclTensor* scalesOptional,const aclTensor* expertIdxOptional, int64_t dropPadMode, const aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnMoeFinalizeRoutingV2(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, const aclrtStream stream)

功能描述

  • 算子功能:MoE计算中,最后处理合并MoE FFN的输出结果。
  • 计算公式expertid=expertIdx[i,k]expertid=expertIdx[i,k] out(i,j)=x1i,j+x2i,j+k=0K(scalesi,k(expandedXexpandedRowIdxi+knumrows,j+biasexpertid,j))out(i,j)=x1_{i,j}+x2_{i,j}+\sum_{k=0}^{K}(scales_{i,k}*(expandedX_{expandedRowIdx_{i+k*num_rows},j}+bias_{expertid,j}))

aclnnMoeFinalizeRoutingV2GetWorkspaceSize

  • 参数说明:

    • expandedX (aclTensor*,计算输入):Device侧的aclTensor,公式中的expandedX ,MoE的FFN输出,要求是一个2D的Tensor,数据类型支持FLOAT16、BFLOAT16、FLOAT32,数据格式要求为ND。限制:其shape支持(NUM_ROWS * K, H),NUM_ROWS为行数,K为从总的专家E中选出K个专家,H为列数。
    • expandedRowIdx(aclTensor*,计算输入):Device侧的aclTensor,公式中的expandedRowIdx,要求是一个1D的Tensor,数据类型支持INT32。限制:其shape支持(NUM_ROWS * K),dropPadMode参数值为0时,Tensor中的值取值范围是[0,NUM_ROWS * K-1]。
    • x1Optional(aclTensor*,可选计算输入):Device侧的aclTensor,公式中的x1,要求是一个2D的Tensor,数据类型要求与expandedX一致 ,shape要求与out的shape一致。
    • x2Optional(aclTensor*,可选计算输入):Device侧的aclTensor,公式中的x2,要求是一个2D的Tensor,数据类型要求与expandedX一致 ,shape要求与out的shape一致。在x1Optional参数未输入的情况下,x2Optional参数也不能输入。
    • biasOptional(aclTensor*,可选计算输入):Device侧的aclTensor,公式中的bias,要求是一个2D的Tensor,数据类型要求与expandedX一致。限制:其shape支持(E,H),E为总的专家个数,H为列数。
    • scalesOptional(aclTensor*,可选计算输入):Device侧的aclTensor,公式中的scales,要求是一个2D的Tensor,数据类型要求与expandedX一致 ,限制:其shape支持(NUM_ROWS,K)。
    • expertIdxOptional(aclTensor*,可选计算输入):Device侧的aclTensor,公式中的expertIdx,要求是一个2D的Tensor,数据类型支持INT32。限制:其shape支持(NUM_ROWS,K),Tensor中的值取值范围是[0, E-1],E为总的专家个数。
    • dropPadMode(int64_t,计算输入): int64数据类型,表示是否支持丢弃模式,当前仅支持取 0(drop less 场景,expandedRowIdx 按列排列)。
    • out(aclTensor*,计算输出):Device侧的aclTensor,公式中的输出,要求是一个2D的Tensor,数据类型与expandedX 需要保持一致。限制:其shape支持(NUM_ROWS, H)。
    • workspaceSize(uint64_t*,出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

    161001 (ACLNN_ERR_PARAM_NULLPTR): 1. 传入的expandedX、x1Optional、x2Optional、biasOptional、scalesOptional,expandedRowIdx和expertIdxOptional是空指针时。
    161002 (ACLNN_ERR_PARAM_INVALID): 1. expandedX、x1Optional、x2Optional、biasOptional、scalesOptional、expandedRowIdx和expertIdxOptional的数据类型不在支持的范围之内。
                                      1. expandedX、x1Optional、x2Optional、biasOptional、scalesOptional、expandedRowIdx和expertIdxOptional的shape不在支持的范围之内。

aclnnMoeFinalizeRoutingV2

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMoeFinalizeRoutingV2GetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include "acl/acl.h"
#include "aclnnop/aclnn_moe_finalize_routing_v2.h"
#include <iostream>
#include <vector>

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shape_size = 1;
    for (auto i : shape) {
        shape_size *= i;
    }
    return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
    // 固定写法,AscendCL初始化
    auto  ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }
    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> expandedXShape = {3 * 2, 4};
  std::vector<int64_t> x1Shape = {3, 4};
  std::vector<int64_t> x2OptionalShape = {3, 4};
  std::vector<int64_t> biasShape = {2, 4};
  std::vector<int64_t> scalesShape = {3, 2};
  std::vector<int64_t> expandedExpertIdxShape = {3, 2};
  std::vector<int64_t> expandedRowIdxShape = {3 * 2};
  std::vector<int64_t> outShape = {3, 4};
  void* expandedXAddr = nullptr;
  void* x1Addr = nullptr;
  void* x2OptionalAddr = nullptr;
  void* biasAddr = nullptr;
  void* scalesDeviceAddr = nullptr;
  void* expandedExpertIdxAddr = nullptr;
  void* expandedRowIdxAddr = nullptr;
  void* outDeviceAddr = nullptr;
  
  aclTensor* expandedX = nullptr;
  aclTensor* x1 = nullptr;
  aclTensor* x2Optional = nullptr;
  aclTensor* bias = nullptr;
  aclTensor* scales = nullptr;
  aclTensor* expandedExpertIdx = nullptr;
  aclTensor* expandedRowIdx = nullptr;
  aclTensor* out = nullptr;
  std::vector<float> expandedXHostData = {0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, 10.1, 11.1,
                                                     0.1, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1, 9.1, 10.1, 11.1};
  std::vector<float> x1HostData = {0.2, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 9.2, 10.2, 11.2};
  std::vector<float> x2OptionalHostData = {0.2, 1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2, 9.2, 10.2, 11.2};
  std::vector<float> biasHostData = {0.2, 0.4, 0.2, 0.4, 0.2, 0.4, 0.2, 0.4};
  std::vector<float> scalesHostData = {1.3, 1.6, 1.2, 1.8, 1.2, 2.3};
  std::vector<int32_t> expandedExpertIdxHostData = {0, 1, 0, 1, 0, 1};
  std::vector<int32_t> expandedRowIdxHostData = {2, 1, 4, 3, 0, 5};
  std::vector<float> outHostData(12, 0.0f);
  int64_t dropPadMode = 0;
  // 创建expandedX aclTensor
  ret = CreateAclTensor(expandedXHostData, expandedXShape, &expandedXAddr,
                        aclDataType::ACL_FLOAT, &expandedX);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建x1 aclTensor
  ret = CreateAclTensor(x1HostData, x1Shape, &x1Addr, aclDataType::ACL_FLOAT, &x1);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建x2Optional aclScalar
  ret = CreateAclTensor(x2OptionalHostData, x2OptionalShape, &x2OptionalAddr, aclDataType::ACL_FLOAT, &x2Optional);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建bias aclTensor
  ret = CreateAclTensor(biasHostData, biasShape, &biasAddr, aclDataType::ACL_FLOAT, &bias);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建totalWeightOut aclTensor
  ret = CreateAclTensor(scalesHostData, scalesShape, &scalesDeviceAddr, aclDataType::ACL_FLOAT, &scales);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  
  // 创建expandedExpertIdx aclTensor
  ret = CreateAclTensor(expandedExpertIdxHostData, expandedExpertIdxShape, &expandedExpertIdxAddr,
                        aclDataType::ACL_INT32, &expandedExpertIdx);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建expandedRowIdx aclTensor
  ret = CreateAclTensor(expandedRowIdxHostData, expandedRowIdxShape, &expandedRowIdxAddr,
                        aclDataType::ACL_INT32, &expandedRowIdx);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建Out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3.调用CANN算子库API,需要修改为具体的算子接口
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;

  // 调用aclnnMoeFinalizeRoutingV2第一段接口
  ret = aclnnMoeFinalizeRoutingV2GetWorkspaceSize(expandedX, expandedRowIdx, x1, x2Optional, bias, scales,
                                                  expandedExpertIdx, dropPadMode, out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMoeFinalizeRoutingV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
      ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
      CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnMoeFinalizeRoutingV2第二段接口
  ret = aclnnMoeFinalizeRoutingV2(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMoeFinalizeRoutingV2 failed. ERROR: %d\n", ret); return ret);

  // 4.( 固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至Host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0.0f);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]),
                    outDeviceAddr, size * sizeof(float), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
      LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(expandedX);
  aclDestroyTensor(x1);
  aclDestroyTensor(x2Optional);
  aclDestroyTensor(bias);
  aclDestroyTensor(scales);
  aclDestroyTensor(expandedExpertIdx);
  aclDestroyTensor(expandedRowIdx);
  aclDestroyTensor(out);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(expandedXAddr);
  aclrtFree(x1Addr);
  aclrtFree(x2OptionalAddr);
  aclrtFree(biasAddr);
  aclrtFree(scalesDeviceAddr);
  aclrtFree(expandedExpertIdxAddr);
  aclrtFree(expandedRowIdxAddr);
  aclrtFree(outDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();
  return 0;
}