下载
中文
注册

aclnnMoeInitRoutingV2

支持的产品型号

  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用 “aclnnMoeInitRoutingV2GetWorkspaceSize”接口获取入参并根据计算流程计算所需workspace大小获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnMoeInitRoutingV2”接口执行计算。

  • aclnnStatus aclnnMoeInitRoutingV2GetWorkspaceSize(const aclTensor *x, const aclTensor *expertIdx, int64_t activeNum, int64_t expertCapacity, int64_t expertNum, int64_t dropPadMode, int64_t expertTokensCountOrCumsumFlag, bool expertTokensBeforeCapacityFlag, aclTensor *expandedXOut, aclTensor *expandedRowIdxOut, aclTensor *expertTokensCountOrCumsumOut, aclTensor *expertTokensBeforeCapacityOut, uint64_t *workspaceSize, aclOpExecutor **executor)
  • aclnnStatus aclnnMoeInitRoutingV2(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)

功能描述

  • 算子功能:MoE的routing计算,根据aclnnMoeGatingTopKSoftmaxV2的计算结果做routing处理。

    本接口针对aclnnMoeInitRouting做了如下功能变更,请根据实际情况选择合适的接口:

    • 新增drop模式,在该模式下输出内容会根据每个专家的expertCapacity处理,超过expertCapacity不做处理,不足的会补0。
    • 新增Dropless模式下expertTokensCountOrCumsumOut可选输出,drop场景下expertTokensBeforeCapacityOut可选输出。
    • 删除rowIdx输入。
  • 计算公式

    1.对输入expertIdx做排序,得出排序后的结果sortedExpertIdx和对应的序号sortedRowIdx:

    sortedExpertIdx,sortedRowIdx=keyValueSort(expertIdx)sortedExpertIdx, sortedRowIdx=keyValueSort(expertIdx)

    2.以sortedRowIdx做位置映射得出expandedRowIdxOut:

    expandedRowIdxOut[sortedRowIdx[i]]=iexpandedRowIdxOut[sortedRowIdx[i]]=i

    3.对x取前numRows个sortedRowIdx的对应位置的值,得出expandedXOut:

    expandedXOut[i]=x[sortedRowIdx[i]%numRows]expandedXOut[i]=x[sortedRowIdx[i]\%numRows]

    4.对sortedExpertIdx的每个专家统计直方图结果,再进行Cumsum,得出expertTokensCountOrCumsumOut:

    expertTokensCountOrCumsumOut[i]=Cumsum(Histogram(sortedExpertIdx))expertTokensCountOrCumsumOut[i]=Cumsum(Histogram(sortedExpertIdx))

    5.对sortedExpertIdx的每个专家统计直方图结果,得出expertTokensBeforeCapacityOut:

    expertTokensBeforeCapacityOut[i]=Histogram(sortedExpertIdx)expertTokensBeforeCapacityOut[i]=Histogram(sortedExpertIdx)

aclnnMoeInitRoutingV2GetWorkspaceSize

  • 参数说明

    • x(aclTensor*,计算输入):MOE的输入即token特征输入,要求为一个2D的Tensor,shape为[NUM_ROWS, H],H代表每个Token的长度,数据类型支持float16、bfloat16、float32,数据格式要求为ND,支持非连续的Tensor
    • expertIdx (aclTensor*,计算输入):aclnnMoeGatingTopKSoftmaxV2的输出每一行特征对应的K个处理专家,要求是一个2D的shape [NUM_ROWS, K]。数据类型支持int32,数据格式要求为ND,支持非连续的Tensor。在Drop/Pad场景下或者非Drop/Pad场景下且需要输出expertTokensCountOrCumsumOut时,要求值域范围是[0, expertNum - 1], 其他场景要求大于等于0。
    • activeNum(int64_t,计算输入):表示是否为Active场景,该属性在dropPadMode为0时生效,值范围大于等于0;0表示Dropless场景,大于0时表示Active场景,约束所有专家共同处理tokens总量
    • expertCapacity(int64_t, 计算输入):表示每个专家能够处理的tokens数,值范围大于等于0;Drop/Pad场景下值域范围(0, NUM_ROWS],此时各专家将超过capacity的tokens drop掉,不够capacity阈值时则pad全0 tokens;其他场景不关心该属性值。
    • expertNum(int64_t, 计算输入):表示专家数,值范围大于等于0;Drop/Pad场景下或者expertTokensCountOrCumsumFlag大于0需要输出expertTokensCountOrCumsumOut时,expertNum需大于0。
    • dropPadMode(int64_t, 计算输入):表示是否为Drop/Pad场景,取值为0和1。
      • 0:表示非Drop/Pad场景,该场景下不校验expertCapacity。
      • 1:表示Drop/Pad场景,需要校验expertNum和expertCapacity,对于每个专家处理的超过和不足expertCapacity的值会做相应的处理。
    • expertTokensCountOrCumsumFlag(int64_t, 计算输入):取值为0、1和2。
      • 0:表示不输出expertTokensCountOrCumsumOut。
      • 1:表示输出的值为各个专家处理的token数量的累计值。
      • 2:表示输出的值为各个专家处理的token数量。
    • expertTokensBeforeCapacityFlag(bool,计算输入):取值为false和true。
      • false:表示不输出expertTokensBeforeCapacityOut。
      • true:表示输出的值为在drop之前各个专家处理的token数量。
    • expandedXOut(aclTensor*,计算输出):根据expertIdx进行扩展过的特征,在Dropless/Active场景下要求是一个2D的Tensor,Dropless场景shape为[NUM_ROWS * K, H],Active场景shape为[min(activeNum, NUM_ROWS * K), H],在Drop/Pad场景下要求是一个3D的Tensor,shape为[expertNum, expertCapacity, H]。数据类型同x,支持float16、bfloat16、float32,数据格式要求为ND,不支持非连续的Tensor
    • expandedRowIdxOut(aclTensor*,计算输出):expandedXOut和x的索引映射关系, 要求是一个1D的Tensor,Shape为[NUM_ROWS*K, ],数据类型支持int32,数据格式要求为ND,不支持非连续的Tensor
    • expertTokensCountOrCumsumOut(aclTensor*,计算输出):输出每个专家处理的token数量的统计结果及累加值,通过expertTokensCountOrCumsumFlag参数控制是否输出,该值仅在非Drop/Pad场景下输出,要求是一个1D的Tensor,Shape为[expertNum, ],数据类型支持int32,数据格式要求为ND,不支持非连续的Tensor
    • expertTokensBeforeCapacityOut(aclTensor*,计算输出):输出drop之前每个专家处理的token数量的统计结果,通过expertTokensBeforeCapacityFlag参数控制是否输出,该值仅在Drop/Pad场景下输出,要求是一个1D的Tensor,Shape为[expertNum, ],数据类型支持int32,数据格式要求为ND,不支持非连续的Tensor
    • workspaceSize(uint64_t*,出参):返回用户需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**,出参):返回op执行器,包含了算子计算流程。
  • 返回值

    返回aclnnStatus状态码,具体参见aclnn返回码

    第一段接口完成入参校验,出现以下场景时报错:
    161001(ACLNN_ERR_PARAM_NULLPTR):1. 计算输入和必选计算输出是空指针
    161002(ACLNN_ERR_PARAM_INVALID):1. 计算输入和输出的数据类型和格式不在支持的范围内
    561002(ACLNN_ERR_INNER_TILING_ERROR): 1. x和expertIdx的shape维度不等于2,且第一维不相等
                                          2. activeNum、expertNum、expertCapacity的值小于0
                                          3. dropPadMode、expertTokensCountOrCumsumFlag、expertTokensBeforeCapacityFlag不在取值范围内
                                          4. dropPadMode等于1时,expertCapacity和expertNum等于0
                                          5. expertTokensCountOrCumsumOut需要输出时,expertNum等于0

aclnnMoeInitRoutingV2

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnMoeInitRoutingV2GetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

约束与限制

无。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include "acl/acl.h"
#include "aclnnop/aclnn_moe_init_routing_v2.h"
#include <iostream>
#include <vector>
#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)
#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shape_size = 1;
    for (auto i : shape) {
        shape_size *= i;
    }
    return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
    // 固定写法,AscendCL初始化
    auto ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    ret = aclrtSetDevice(deviceId);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    ret = aclrtCreateStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }
    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                              shape.data(), shape.size(), *deviceAddr);
    return 0;
}
int main() {
    // 1. 固定写法,device/stream初始化, 参考acl对外接口列表
    // 根据自己的实际device填写deviceId
    int32_t deviceId = 0;
    aclrtStream stream;
    auto ret = Init(deviceId, &stream);
    // check根据自己的需要处理
    CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
    // 2. 构造输入与输出,需要根据API的接口定义构造
    std::vector<int64_t> xShape = {3, 4};
    std::vector<int64_t> idxShape = {3, 2};
    std::vector<int64_t> expandedXOutShape = {3, 2, 4};
    std::vector<int64_t> idxOutShape = {6};
    std::vector<int64_t> expertTokenOutShape = {3};
    void* xDeviceAddr = nullptr;
    void* expertIdxDeviceAddr = nullptr;
    void* expandedXOutDeviceAddr = nullptr;
    void* expandedRowIdxOutDeviceAddr = nullptr;
    void* expertTokenBeforeCapacityOutDeviceAddr = nullptr;
    aclTensor* x = nullptr;
    aclTensor* expertIdx = nullptr;
    int64_t activeNum = 0;
    int64_t expertCapacity = 2;
    int64_t expertNum = 3;
    int64_t dropPadMode = 1;
    int64_t expertTokensCountOrCumsumFlag = 0;
    bool expertTokensBeforeCapacityFlag = true;
    aclTensor* expandedXOut = nullptr;
    aclTensor* expandedRowIdxOut = nullptr;
    aclTensor* expertTokensBeforeCapacityOut = nullptr;
    std::vector<float> xHostData = {0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.3};
    std::vector<int> expertIdxHostData = {1, 2, 0, 1, 0, 2};
    std::vector<float> expandedXOutHostData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    std::vector<int> expandedRowIdxOutHostData = {0, 0, 0, 0, 0, 0};
    std::vector<int> expertTokensBeforeCapacityOutHostData = {0, 0, 0};
    // 创建self aclTensor
    ret = CreateAclTensor(xHostData, xShape, &xDeviceAddr, aclDataType::ACL_FLOAT, &x);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(expertIdxHostData, idxShape, &expertIdxDeviceAddr, aclDataType::ACL_INT32, &expertIdx);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 创建out aclTensor
    ret = CreateAclTensor(expandedXOutHostData, expandedXOutShape, &expandedXOutDeviceAddr, aclDataType::ACL_FLOAT, &expandedXOut);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(expandedRowIdxOutHostData, idxOutShape, &expandedRowIdxOutDeviceAddr, aclDataType::ACL_INT32, &expandedRowIdxOut);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(expertTokensBeforeCapacityOutHostData, expertTokenOutShape, &expertTokenBeforeCapacityOutDeviceAddr, aclDataType::ACL_INT32, &expertTokensBeforeCapacityOut);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 3. 调用CANN算子库API,需要修改为具体的API
    uint64_t workspaceSize = 0;
    aclOpExecutor* executor;
    // 调用aclnnMoeInitRoutingV2第一段接口
    ret = aclnnMoeInitRoutingV2GetWorkspaceSize(x, expertIdx, activeNum, expertCapacity, expertNum, dropPadMode, expertTokensCountOrCumsumFlag, expertTokensBeforeCapacityFlag, expandedXOut, expandedRowIdxOut, nullptr, expertTokensBeforeCapacityOut, &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMoeInitRoutingV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    void* workspaceAddr = nullptr;
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
    }
    // 调用aclnnMoeInitRoutingV2第二段接口
    ret = aclnnMoeInitRoutingV2(workspaceAddr, workspaceSize, executor, stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnMoeInitRoutingV2 failed. ERROR: %d\n", ret); return ret);
    // 4. 固定写法,同步等待任务执行结束
    ret = aclrtSynchronizeStream(stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
    auto expandedXSize = GetShapeSize(expandedXOutShape);
    std::vector<float> expandedXData(expandedXSize, 0);
    ret = aclrtMemcpy(expandedXData.data(), expandedXData.size() * sizeof(expandedXData[0]), expandedXOutDeviceAddr, expandedXSize * sizeof(float),
                      ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < expandedXSize; i++) {
        LOG_PRINT("expandedXData[%ld] is: %f\n", i, expandedXData[i]);
    }
    auto expandedRowIdxSize = GetShapeSize(idxOutShape);
    std::vector<int> expandedRowIdxData(expandedRowIdxSize, 0);
    ret = aclrtMemcpy(expandedRowIdxData.data(), expandedRowIdxData.size() * sizeof(expandedRowIdxData[0]), expandedRowIdxOutDeviceAddr, expandedRowIdxSize * sizeof(int32_t),
                      ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < expandedRowIdxSize; i++) {
        LOG_PRINT("expandedRowIdxData[%ld] is: %d\n", i, expandedRowIdxData[i]);
    }
    auto expertTokensBeforeCapacitySize = GetShapeSize(expertTokenOutShape);
    std::vector<int> expertTokenIdxData(expertTokensBeforeCapacitySize, 0);
    ret = aclrtMemcpy(expertTokenIdxData.data(), expertTokenIdxData.size() * sizeof(expertTokenIdxData[0]), expertTokenBeforeCapacityOutDeviceAddr, expertTokensBeforeCapacitySize * sizeof(int32_t), ACL_MEMCPY_DEVICE_TO_HOST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
    for (int64_t i = 0; i < expertTokensBeforeCapacitySize; i++) {
        LOG_PRINT("expertTokenIdxData[%ld] is: %d\n", i, expertTokenIdxData[i]);
    }
    // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
    aclDestroyTensor(x);
    aclDestroyTensor(expertIdx);
    aclDestroyTensor(expandedXOut);
    aclDestroyTensor(expandedRowIdxOut);
    aclDestroyTensor(expertTokensBeforeCapacityOut);

    // 7. 释放device资源,需要根据具体API的接口定义修改
    aclrtFree(xDeviceAddr);
    aclrtFree(expertIdxDeviceAddr);
    aclrtFree(expandedXOutDeviceAddr);
    aclrtFree(expandedRowIdxOutDeviceAddr);
    aclrtFree(expertTokenBeforeCapacityOutDeviceAddr);
    if (workspaceSize > 0) {
      aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(stream);
    aclrtResetDevice(deviceId);
    aclFinalize();
    return 0;
}