下载
中文
注册

aclnnRReluWithNoise&aclnnInplaceRReluWithNoise

支持的产品型号

  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

  • aclnnRReluWithNoise和aclnnInplaceRReluWithNoise实现相同的功能,使用区别如下,请根据自身实际场景选择合适的算子。

    • aclnnRReluWithNoise:需新建一个输出张量对象存储计算结果。
    • aclnnInplaceRReluWithNoise:无需新建输出张量对象,直接在输入张量的内存中存储计算结果。
  • 每个算子分为两段式接口,必须先调用“aclnnRReluWithNoiseGetWorkspaceSize”或”aclnnInplaceRReluWithNoiseGetWorkspaceSize“接口获取入参并根据流程计算所需workspace大小,再调用“aclnnRReluWithNoise”或”aclnnInplaceRReluWithNoise“接口执行计算。

    • aclnnStatus aclnnRReluWithNoiseGetWorkspaceSize(const aclTensor *self, const aclTensor *noise, const aclScalar *lower, const aclScalar *upper, bool training, int64_t seed, int64_t offset, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor);

    • aclnnStatus aclnnRReluWithNoise(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, const aclrtStream stream);

    • aclnnStatus aclnnInplaceRReluWithNoiseGetWorkspaceSize(const aclTensor* self, const aclTensor* noise, const aclScalar* lower, const aclScalar* upper, bool training, int64_t seed, int64_t offset, uint64_t* workspaceSize, aclOpExecutor** executor);

    • aclnnStatus aclnnInplaceRReluWithNoise(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, const aclrtStream stream);

功能描述

  • 算子功能:实现了带噪声的随机修正线性单元激活函数。训练模式采用公式1和2,公式2在输入小于等于0时,斜率为a;输入大于0时斜率为1。推理模式采用公式1。

  • 计算公式1:

    RReluWithNoise(self)={self,self>0aself,self0RReluWithNoise(self)=\begin{cases} self, & self\gt0 \\ a*self, & self\le 0 \end{cases}
  • 计算公式2:

    其中a是随机变量,服从均匀分布UU(lower,upper)。 如果是训练模式(training == true),noise计算公式如下:

    noisei={1,selfi>0a,selfi0noise_i = \begin{cases} 1, & self_i \gt 0 \\ a, & self_i \le 0 \end{cases}

aclnnRReluWithNoiseGetWorkspaceSize

  • 参数说明:

    • self(aclTensor*, 计算输入): 公式中的selfself,Device侧的aclTensor,数据格式支持ND。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • noise(aclTensor*, 计算输入): 公式中的noiseinoise_i,Device侧的aclTensor,Size需要不小于self(shape建议与self一致),且数据类型需要与self一致,数据格式支持ND。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • lower(aclScalar*, 计算输入): 均匀分布UU中的lower,Device侧的aclScalar,且数据类型需要与self、out满足数据类型推导规则(参见互推导关系)。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • upper(aclScalar*, 计算输入): 均匀分布UU中的upper,Device侧的aclScalar,且数据类型需要与self、out满足数据类型推导规则(参见互推导关系)。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • training(bool, 计算输入): bool类型变量,区分是训练还是推理。
    • seed(int64_t, 计算输入): int64_t类型变量,随机数生成器的种子,影响生成的随机数序列。
    • offset(int64_t, 计算输入): int64_t类型变量,随机数生成器的偏移量,影响生成的随机数序列的位置。偏移量设置后,生成的随机数序列会从指定位置开始。
    • out(aclTensor*, 计算输出): Device侧的aclTensor,且数据类型需要与self一致,shape需要与self一致,数据格式支持ND。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • workspaceSize(uint64_t*, 出参): 返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参): 返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

第一段接口完成入参校验,出现以下场景时报错:
ACLNN_ERR_PARAM_NULLPTR: 1.传入的self、noise或out是空指针。
ACLNN_ERR_PARAM_INVALID:1.self和noise的数据类型不在支持的范围之内。
                         2.self的Size大于noise的Size。

aclnnRReluWithNoise

  • 参数说明:

    • workspace(void*, 入参): 在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参): 在Device侧申请的workspace大小, 由第一段接口aclnnRReluWithNoiseGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参): op执行器, 包含了算子计算流程。
    • stream(aclrtStream, 入参): 指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

aclnnInplaceRReluWithNoiseGetWorkspaceSize

  • 参数说明:

    • self(aclTensor*, 计算输入): 公式中的selfself,Device侧的aclTensor,数据格式支持ND。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • noise(aclTensor*, 计算输入): 公式中的noiseinoise_i,Device侧的aclTensor,Size需要不小于self(shape建议与self一致),且数据类型需要与self一致,数据格式支持ND。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • lower(aclScalar*, 计算输入): 均匀分布UU中的lower,Device侧的aclScalar,且数据类型需要与self一致。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • upper(aclScalar*, 计算输入): 均匀分布UU中的upper,Device侧的aclScalar,且数据类型需要与self一致。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持BFLOAT16、FLOAT16、FLOAT。
    • training(bool, 计算输入): bool类型变量,区分是训练还是推理。
    • seed(int64_t, 计算输入): int64_t类型变量,随机数生成器的种子,影响生成的随机数序列。
    • offset(int64_t, 计算输入): int64_t类型变量,随机数生成器的偏移量,影响生成的随机数序列的位置。偏移量设置后,生成的随机数序列会从指定位置开始。
    • workspaceSize(uint64_t*, 出参): 返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参): 返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

第一段接口完成入参校验,出现以下场景时报错:
ACLNN_ERR_PARAM_NULLPTR: 1.传入的self或noise是空指针。
ACLNN_ERR_PARAM_INVALID:1.self和noise的数据类型不在支持的范围之内。
                         2.self的Size大于noise的Size。

aclnnInplaceRReluWithNoise

  • 参数说明:

    • workspace(void*, 入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小, 由第一段接口aclnnInplaceRReluWithNoiseGetWorkspaceSize获取。
    • executor(aclOpExecutor*, 入参):op执行器, 包含了算子计算流程。
    • stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus: 返回状态码,具体参见aclnn返回码

约束与限制

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_rrelu_with_noise.h"

#define CHECK_RET(cond, return_expr) \
 do {                                \
    if (!(cond)) {                   \
        return_expr;                 \
    }                                \
 } while (0)

#define LOG_PRINT(message, ...)      \
 do {                                \
    printf(message, ##__VA_ARGS__);  \
 } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
    int64_t shape_size = 1;
    for (auto i: shape) {
        shape_size *= i;
    }
    return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);

  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> selfShape = {2, 2};
  std::vector<int64_t> outShape = {2, 2};
  std::vector<int64_t> noiseShape = {2, 2};
  void* selfDeviceAddr = nullptr;
  void* outDeviceAddr = nullptr;
  void* noiseDeviceAddr = nullptr;
  aclTensor* self = nullptr;
  aclTensor* out = nullptr;
  aclTensor* noise = nullptr;
  aclScalar* lower = nullptr;
  aclScalar* upper = nullptr;
  std::vector<float> selfHostData = {1, 2, 3, 4};
  std::vector<float> outHostData = {0, 0, 0, 0};
  std::vector<float> noiseHostData = {4, 3, 2, 1};
  float lowerValue = 0.1f;
  float upperValue = 0.3f;
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建out aclTensor
  ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建noise aclTensor
  ret = CreateAclTensor(noiseHostData, noiseShape, &noiseDeviceAddr, aclDataType::ACL_FLOAT, &noise);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建lower aclScalar
  lower = aclCreateScalar(&lowerValue, aclDataType::ACL_FLOAT);
  CHECK_RET(lower != nullptr, return ret);
  // 创建upper aclScalar
  upper = aclCreateScalar(&upperValue, aclDataType::ACL_FLOAT);
  CHECK_RET(upper != nullptr, return ret);
  bool training = false;
  int64_t seed = 0;
  int64_t offset = 0;

  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  
  // aclnnRReluWithNoise接口调用示例
  // 3. 调用aclnnRReluWithNoise第一段接口
  ret = aclnnRReluWithNoiseGetWorkspaceSize(self, noise, lower, upper, training, seed, offset, 
                                            out, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRReluWithNoiseGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnRReluWithNoise第二段接口
  ret = aclnnRReluWithNoise(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnRReluWithNoise failed. ERROR: %d\n", ret); return ret);

  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(outShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // aclnnInplaceRReluWithNoise接口调用示例
  // step3.调用aclnnInplaceRReluWithNoise第一段接口
  ret = aclnnInplaceRReluWithNoiseGetWorkspaceSize(self, noise, lower, upper, training, seed, offset, 
                                                   &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceRReluWithNoiseGetWorkspaceSize failed. ERROR: %d\n", ret); 
                                          return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
  }
  // 调用aclnnInplaceRReluWithNoise第二段接口
  ret = aclnnInplaceRReluWithNoise(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnInplaceRReluWithNoise failed. ERROR: %d\n", ret); return ret);

  // step4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);

  // step5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
                    size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor,需要根据具体API的接口定义修改
  aclDestroyTensor(self);
  aclDestroyTensor(out);
  aclDestroyTensor(noise);
  aclDestroyScalar(lower);
  aclDestroyScalar(upper);

  // 7. 释放device资源,需要根据具体API的接口定义参数
  aclrtFree(selfDeviceAddr);
  aclrtFree(outDeviceAddr);
  aclrtFree(noiseDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();

  return 0;
}