下载
中文
注册

aclnnSoftshrinkBackward

支持的产品型号

  • Atlas 训练系列产品
  • Atlas A2 训练系列产品/Atlas 800I A2 推理产品

接口原型

每个算子分为两段式接口,必须先调用“aclnnSoftshrinkBackwardGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnSoftshrinkBackward”接口执行计算。

  • aclnnStatus aclnnSoftshrinkBackwardGetWorkspaceSize(const aclTensor* gradOutput, const aclTensor* self, const aclScalar* lambda, aclTensor* gradInput, uint64_t* workspaceSize, aclOpExecutor** executor)
  • aclnnStatus aclnnSoftshrinkBackward(void* workspace, uint64_t workspaceSize, aclOpExecutor* executor, const aclrtStream stream)

功能描述

  • 算子功能:Softshrink函数的反向接口。
  • 计算公式:
    • Softshrink正向计算公式:

      Softshrink(x)={xλ, if x>λx+λ, if x<λSoftshrink(x)= \begin{cases} x - {\lambda}, \ if \ x > {\lambda}\\ x + {\lambda}, \ if \ x < -{\lambda} \end{cases}
    • Softshrink反向计算公式:

      gradInput={gradOutput, if x>λgradOutput, if x<λ0, otherwisegradInput= \begin{cases} gradOutput, \ if \ x > \lambda \\ gradOutput, \ if \ x <-\lambda \\ 0, \ otherwise \end{cases}

aclnnSoftshrinkBackwardGetWorkspaceSize

  • 参数说明:

    • gradOutput(aclTensor*, 计算输入):公式中的gradOutputgradOutput,Device侧的aclTensor,shape与self满足broadcast规则,支持非连续的Tensor,支持空Tensor传入,数据格式支持ND,broadcast规则具体参见broadcast关系
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT16、FLOAT、BFLOAT16。
    • self(aclTensor*, 计算输入):公式中的xx,输入tensor。shape与gradOutput满足broadcast规则,支持非连续的Tensor,支持空Tensor传入,数据格式支持ND,broadcast规则具体参见broadcast关系
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT16、FLOAT、BFLOAT16。
    • lambd(aclScalar*, 计算输入): 公式中的输入λ\lambda。数据类型支持FLOAT类型,取值范围应大于等于0。
    • gradInput(aclTensor*, 计算输入):公式中的gradInputgradInput,输出tensor。shape需要与self和gradOutput的broadcast结果一致。支持非连续的Tensor,支持空Tensor传入,数据格式支持ND。
      • Atlas 训练系列产品:数据类型支持FLOAT16、FLOAT。
      • Atlas A2 训练系列产品/Atlas 800I A2 推理产品:数据类型支持FLOAT16、FLOAT、BFLOAT16。
    • workspaceSize(uint64_t* , 出参)::返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor**, 出参)::返回op执行器,包含了算子计算流程。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

第一段接口完成入参校验,出现以下场景时报错:
返回161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的 gradOutput、self 、lambd、gradInput是空指针时。
返回161002(ACLNN_ERR_PARAM_INVALID):1. gradOutput、self、lambd和gradInput的数据类型不在支持的范围之内。
                                      2. self和gradOutput的shape不满足broadcast规则。
                                      3. lambd小于0.
                                      4. gradInput的shape与self和gradOutput的broadcast结果不一致。

aclnnSoftshrinkBackwardBackward

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnSoftshrinkBackwardGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL Stream流。
  • 返回值:

    aclnnStatus:返回状态码,具体参见aclnn返回码

约束与限制

无。

调用示例

示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_softshrink_backward.h"

#define CHECK_RET(cond, return_expr) \
  do {                               \
    if (!(cond)) {                   \
      return_expr;                   \
    }                                \
  } while (0)

#define LOG_PRINT(message, ...)     \
  do {                              \
    printf(message, ##__VA_ARGS__); \
  } while (0)

int64_t GetShapeSize(const std::vector<int64_t>& shape) {
  int64_t shape_size = 1;
  for (auto i : shape) {
    shape_size *= i;
  }
  return shape_size;
}

int Init(int32_t deviceId, aclrtStream* stream) {
  // 固定写法,AscendCL初始化
  auto ret = aclInit(nullptr);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
  ret = aclrtSetDevice(deviceId);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
  ret = aclrtCreateStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
  return 0;
}

template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
                    aclDataType dataType, aclTensor** tensor) {
  auto size = GetShapeSize(shape) * sizeof(T);
  // 调用aclrtMalloc申请device侧内存
  auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

  // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
  ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

  // 计算连续tensor的strides
  std::vector<int64_t> strides(shape.size(), 1);
  for (int64_t i = shape.size() - 2; i >= 0; i--) {
    strides[i] = shape[i + 1] * strides[i + 1];
  }

  // 调用aclCreateTensor接口创建aclTensor
  *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
  return 0;
}

int main() {
  // 1. (固定写法)device/stream初始化, 参考AscendCL对外接口列表
  // 根据自己的实际device填写deviceId
  int32_t deviceId = 0;
  aclrtStream stream;
  auto ret = Init(deviceId, &stream);
  // check根据自己的需要处理
  CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
  // 2. 构造输入与输出,需要根据API的接口自定义构造
  std::vector<int64_t> gradOutputShape = {4, 2};
  std::vector<int64_t> selfShape = {4, 2};
  std::vector<int64_t> gradInputShape = {4, 2};
  void* gradOutputDeviceAddr = nullptr;
  void* selfDeviceAddr = nullptr;
  void* gradInputDeviceAddr = nullptr;
  aclTensor* gradOutput = nullptr;
  aclTensor* self = nullptr;
  aclTensor* gradInput = nullptr;
  aclScalar* lambd = nullptr;
  std::vector<float> gradOutputHostData = {0, 1, 2, 3, 4, 5, 6, 7};
  std::vector<float> selfHostData = {1, 1, 1, 2, 1, 2, 3, 3};
  std::vector<float> gradInputHostData = {0, 0, 0, 0, 0, 0, 0, 0};
  float lambdValue = 1.2f;
  // 创建gradOutput aclTensor
  ret = CreateAclTensor(gradOutputHostData, gradOutputShape, &gradOutputDeviceAddr, aclDataType::ACL_FLOAT, &gradOutput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // 创建self aclTensor
  ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
  CHECK_RET(ret == ACL_SUCCESS, return ret);
  // lambd aclScalar
  lambd = aclCreateScalar(&lambdValue, aclDataType::ACL_FLOAT);
  CHECK_RET(lambd != nullptr, return ret);
  // 创建 aclTensor
  ret = CreateAclTensor(gradInputHostData, gradInputShape, &gradInputDeviceAddr, aclDataType::ACL_FLOAT, &gradInput);
  CHECK_RET(ret == ACL_SUCCESS, return ret);

  // 3. 调用CANN算子库API,需要修改为具体的API
  uint64_t workspaceSize = 0;
  aclOpExecutor* executor;
  // 调用aclnnSoftshrinkBackward第一段接口
  ret = aclnnSoftshrinkBackwardGetWorkspaceSize(gradOutput, self, lambd, gradInput, &workspaceSize, &executor);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSoftshrinkBackwardGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
  // 根据第一段接口计算出的workspaceSize申请device内存
  void* workspaceAddr = nullptr;
  if (workspaceSize > 0) {
    ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
  }
  // 调用aclnnSoftshrinkBackward第二段接口
  ret = aclnnSoftshrinkBackward(workspaceAddr, workspaceSize, executor, stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnSoftshrinkBackward failed. ERROR: %d\n", ret); return ret);
  // 4. (固定写法)同步等待任务执行结束
  ret = aclrtSynchronizeStream(stream);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
  // 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
  auto size = GetShapeSize(gradInputShape);
  std::vector<float> resultData(size, 0);
  ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), gradInputDeviceAddr, size * sizeof(float),
                    ACL_MEMCPY_DEVICE_TO_HOST);
  CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
  for (int64_t i = 0; i < size; i++) {
    LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
  }

  // 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
  aclDestroyTensor(gradOutput);
  aclDestroyTensor(self);
  aclDestroyScalar(lambd);
  aclDestroyTensor(gradInput);

  // 7. 释放device资源,需要根据具体API的接口定义修改
  aclrtFree(gradOutputDeviceAddr);
  aclrtFree(selfDeviceAddr);
  aclrtFree(gradInputDeviceAddr);
  if (workspaceSize > 0) {
    aclrtFree(workspaceAddr);
  }
  aclrtDestroyStream(stream);
  aclrtResetDevice(deviceId);
  aclFinalize();

  return 0;
}