Silu
功能说明
按元素做Silu运算,计算公式如下,其中PAR表示矢量计算单元一个迭代能够处理的元素个数 :
函数原型
1 2 | template <typename T, bool isReuseSource = false> __aicore__ inline void Silu(const LocalTensor<T>& dstLocal, const LocalTensor<T>& srcLocal, uint32_t dataSize) |
参数说明
参数名 |
描述 |
---|---|
T |
操作数的数据类型。 |
isReuseSource |
是否允许修改源操作数。该参数预留,传入默认值false即可。 |
参数名 |
输入/输出 |
描述 |
---|---|---|
dstTensor |
输出 |
目的操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 |
srcTensor |
输入 |
源操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 源操作数的数据类型需要与目的操作数保持一致。 |
dataSize |
输入 |
实际计算数据元素个数,dataSize∈[0, min(srcTensor.GetSize(), dstTensor.GetSize())] |
返回值
无
支持的型号
约束说明
- 操作数地址偏移对齐要求请参见通用约束。
- 不支持源操作数与目的操作数地址重叠。
- 当前仅支持ND格式的输入,不支持其他格式。
- dataSize需要保证小于或等于srcTensor和dstTensor存储的元素范围。
调用示例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | #include "kernel_operator.h" template <typename srcType> class KernelSilu { public: __aicore__ inline KernelSilu() {} __aicore__ inline void Init(GM_ADDR srcGm, GM_ADDR dstGm, uint32_t inputSize) { dataSize = inputSize; srcGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(srcGm), dataSize); dstGlobal.SetGlobalBuffer(reinterpret_cast<__gm__ srcType *>(dstGm), dataSize); pipe.InitBuffer(inQueueX, 1, dataSize * sizeof(srcType)); pipe.InitBuffer(outQueue, 1, dataSize * sizeof(srcType)); } __aicore__ inline void Process() { CopyIn(); Compute(); CopyOut(); } private: __aicore__ inline void CopyIn() { AscendC::LocalTensor<srcType> srcLocal = inQueueX.AllocTensor<srcType>(); AscendC::DataCopy(srcLocal, srcGlobal, dataSize); inQueueX.EnQue(srcLocal); } __aicore__ inline void Compute() { AscendC::LocalTensor<srcType> dstLocal = outQueue.AllocTensor<srcType>(); AscendC::LocalTensor<srcType> srcLocal = inQueueX.DeQue<srcType>(); AscendC::Silu(dstLocal, srcLocal, dataSize); outQueue.EnQue<srcType>(dstLocal); inQueueX.FreeTensor(srcLocal); } __aicore__ inline void CopyOut() { AscendC::LocalTensor<srcType> dstLocal = outQueue.DeQue<srcType>(); AscendC::DataCopy(dstGlobal, dstLocal, dataSize); outQueue.FreeTensor(dstLocal); } private: AscendC::GlobalTensor<srcType> srcGlobal; AscendC::GlobalTensor<srcType> dstGlobal; AscendC::TPipe pipe; AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQueueX; AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outQueue; uint32_t dataSize = 0; }; template <typename dataType> __aicore__ void kernel_Silu_operator(GM_ADDR srcGm, GM_ADDR dstGm, uint32_t dataSize) { KernelSilu<dataType> op; op.Init(srcGm, dstGm, dataSize); op.Process(); } |
结果示例如下:
1 2 | 输入数据(srcLocal):[3.304723 1.04788 ... -1.0512] 输出数据(dstLocal): [3.185546875 0.77587890625 ... -0.272216796875] |
父主题: Silu