ReduceXorSum
功能说明
按照元素执行Xor(按位异或)运算,并将计算结果ReduceSum求和。
注意:当最终计算结果超出int16范围[-32768,32767]后,将输出-32768 或者 32767。
函数原型
- 通过sharedTmpBuffer入参传入临时空间
1 2
template <typename T, bool isReuseSource = false> __aicore__ inline void ReduceXorSum(LocalTensor<T>& dstTensor, const LocalTensor<T>& src0Tensor, const LocalTensor<T>& src1Tensor, LocalTensor<uint8_t>& sharedTmpBuffer, const uint32_t calCount)
- 接口框架申请临时空间
1 2
template <typename T, bool isReuseSource = false> __aicore__ inline void ReduceXorSum(LocalTensor<T>& dstTensor, const LocalTensor<T>& src0Tensor, const LocalTensor<T>&src1Tensor, const uint32_t calCount);
由于该接口的内部实现中需要保存异或结果以及进行其他运算,需要额外的临时空间来存储计算过程中的中间变量。临时空间支持开发者通过sharedTmpBuffer入参传入和接口框架申请两种方式。
- 通过sharedTmpBuffer入参传入,使用该tensor作为临时空间进行处理,接口框架不再申请。该方式开发者可以自行管理sharedTmpBuffer内存空间,并在接口调用完成后,复用该部分内存,内存不会反复申请释放,灵活性较高,内存利用率也较高。
- 接口框架申请临时空间,开发者无需申请,但是需要预留临时空间的大小。
通过sharedTmpBuffer传入的情况,开发者需要为tensor申请空间;接口框架申请的方式,开发者需要预留临时空间。临时空间大小BufferSize的获取方式如下:通过GetReduceXorSumMaxMinTmpSize中提供的接口获取需要预留空间范围的大小。
参数说明
参数名 |
描述 |
---|---|
T |
操作数的数据类型。 |
isReuseSource |
是否允许修改源操作数,默认值为false。如果开发者允许源操作数被改写,可以使能该参数,使能后能够节省部分内存空间。 设置为true,则本接口内部计算时复用src0Tensor和src1Tensor的内存空间,节省内存空间;设置为false,则本接口内部计算时不复用src0Tensor和src1Tensor的内存空间。 isReuseSource的使用样例请参考更多样例。 |
参数名 |
输入/输出 |
描述 |
---|---|---|
dstTensor |
输出 |
目的操作数。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 输出值需要sizeof(T)大小的空间进行保存。开发者要根据该大小和框架的对齐要求来为dstTensor分配实际内存空间。 说明:
注意:遵循框架对内存开辟的要求(开辟内存的大小满足32Byte对齐),即sizeof(T)不是32Byte对齐时,需要向上进行32Byte对齐。为了对齐而多开辟的内存空间不填值,为一些随机值。 |
src0Tensor |
输入 |
源操作数0。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 源操作数的数据类型需要与目的操作数保持一致。 |
src1Tensor |
输入 |
源操作数1。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 源操作数的数据类型需要与目的操作数保持一致。 |
sharedTmpBuffer |
输入 |
临时缓存。 类型为LocalTensor,支持的TPosition为VECIN/VECCALC/VECOUT。 用于ReduceXorSum计算时存储中间变量,由开发者提供。 临时空间大小BufferSize的获取方式请参考GetReduceXorSumMaxMinTmpSize。 |
calCount |
输入 |
实际计算元素个数,calCount ∈ [0, min(src0Tensor.GetSize(), src1Tensor.GetSize())]。 |
返回值
无
支持的型号
约束说明
- 操作数地址偏移对齐要求请参见通用约束。
- 不支持源操作数与目的操作数地址重叠。
- 不支持sharedTmpBuffer与源操作数和目的操作数地址重叠。
- calCount需要保证小于或等于src0Tensor和src1Tensor的元素范围。
- 当最终计算结果超出int16范围[-32768,32767]后,将输出-32768 或者 32767。
- 对于
Atlas 推理系列产品AI Core ,中间计算数据会采用half类型存储,最终计算结果的误差相对于其他处理器较大。
调用示例
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | AscendC::TPipe pipe; AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQueueX; AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQueueY; AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outQueue; AscendC::TQue<AscendC::TPosition::VECCALC, 1> tmpQue; pipe.InitBuffer(inQueueX, 1, 32 * sizeof(int16_t)); pipe.InitBuffer(inQueueY, 1, 32 * sizeof(int16_t)); pipe.InitBuffer(outQueue, 1, 32); pipe.InitBuffer(tmpQue, 1, bufferSize); // bufferSize 通过Host侧tiling参数获取 AscendC::LocalTensor<int16_t> dstLocal = outQueue.AllocTensor<int16_t>(); AscendC::LocalTensor<int16_t> src0Local = inQueueX.AllocTensor<int16_t>(); AscendC::LocalTensor<int16_t> src1Local = inQueueY.AllocTensor<int16_t>(); AscendC::LocalTensor<uint8_t> sharedTmpBuffer = tmpQue.AllocTensor<uint8_t>(); // 不使用输入内存,输入shape信息为32, 算子输入的数据类型为int16_t, 实际计算个数为前32 AscendC::ReduceXorSum<int16_t, false>(dstLocal, src0Local, src1Local, sharedTmpBuffer, 32); |
1 2 3 4 5 | 输入输出的数据类型为int16_t 输入数据(src0Local): [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 输入数据(src1Local): [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 输出数据(dstLocal): [32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] // 仅32为有效值 |