AscendIndexSQ
小库算法AscendIndexSQ可以根据一组数据进行训练并生成合适的量化函数,对于输入的float32的特征向量,AscendIndexSQ对其量化为Int8类型的特征向量并存储在Device侧以进一步压缩存储空间,在执行向量比对时,将Int8类型的向量反量化为原始的特征向量执行后续的计算,典型AscendIndexSQ的样例参考如下。
#include <faiss/ascend/AscendIndexSQ.h> #include <iostream> using namespace std; int main(int argc, char **argv) { const size_t dim = 512; const size_t ntotal = 10000; vector<float> data(dim * ntotal); for (size_t i = 0; i < data.size(); i++) { data[i] = drand48(); } const size_t k = 100; const size_t searchNum = 100; vector<float> dist(k * searchNum); vector<long> indices(k * searchNum); cout << "Search data set successfully." << endl; faiss::ascend::AscendIndexSQ *index = nullptr; try { faiss::ascend::AscendIndexSQConfig chipConf{0}; index = new faiss::ascend::AscendIndexSQ(dim, faiss::ScalarQuantizer::QuantizerType::QT_8bit, faiss::METRIC_L2, chipConf); index->train(ntotal, data.data()); index->add(ntotal, data.data()); index->search(searchNum, data.data(), k, dist.data(), indices.data()); } catch (...) { cout << "Exception caught!" << endl; delete index; return -1; } delete index; cout << "Search finished successfully" << endl; return 0; }
父主题: 代码参考