下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

SetFmatrix

功能说明

用于调用Load3Dv1/Load3Dv2时设置FeatureMap的属性描述。Load3Dv1/Load3Dv2的模板参数isSetFMatrix设置为false时,表示Load3Dv1/Load3Dv2传入的FeatureMap的属性(包括l1H、l1W、padList,参数介绍参考表4 LoadData3DParamsV1结构体内参数说明表5 LoadData3DParamsV2结构体内参数说明)描述不生效,开发者需要通过该接口进行设置。

函数原型

1
__aicore__ inline void SetFmatrix(uint16_t l1H, uint16_t l1W, const uint8_t padList[4], const FmatrixMode& fmatrixMode)

参数说明

表1 参数说明

参数名称

输入/输出

含义

l1H

输入

源操作数height,取值范围:l1H∈[1, 32767]。

l1W

输入

源操作数width,取值范围:l1W∈[1, 32767] 。

padList

输入

padding列表 [padding_left, padding_right, padding_top, padding_bottom],每个元素取值范围:[0,255]。默认为{0, 0, 0, 0}。

fmatrixMode

输入

用于控制LoadData指令从left还是right寄存器获取信息。FmatrixMode类型,定义如下。当前只支持FMATRIX_LEFT,左右矩阵均使用该配置。

1
2
3
4
enum class FmatrixMode : uint8_t {
    FMATRIX_LEFT = 0,
    FMATRIX_RIGHT = 1,
}; 

注意事项

  • 该接口需要配合load3Dv1/load3Dv2接口一起使用,需要在load3Dv1/load3Dv2接口之前调用。
  • 操作数地址偏移对齐要求请参见通用约束

支持的型号

Atlas推理系列产品AI Core

Atlas 200/500 A2推理产品

调用示例

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#include "kernel_operator.h"

template <typename dst_T, typename fmap_T, typename weight_T, typename dstCO1_T> class KernelLoad3d {
public:
    __aicore__ inline KernelLoad3d()
    {
        // ceiling of 16
        C0 = 32 / sizeof(fmap_T);
        C1 = channelSize / C0;
        coutBlocks = (Cout + 16 - 1) / 16;
        ho = H - dilationH * (Kh - 1);
        wo = W - dilationW * (Kw - 1);
        howo = ho * wo;
        howoRound = ((howo + 16 - 1) / 16) * 16;

        featureMapA1Size = C1 * H * W * C0;      // shape: [C1, H, W, C0]
        weightA1Size = C1 * Kh * Kw * Cout * C0; // shape: [C1, Kh, Kw, Cout, C0]
        featureMapA2Size = howoRound * (C1 * Kh * Kw * C0);
        weightB2Size = (C1 * Kh * Kw * C0) * coutBlocks * 16;
        m = howo;
        k = C1 * Kh * Kw * C0;
        n = Cout;
        biasSize = Cout;                  // shape: [Cout]
        dstSize = coutBlocks * howo * 16; // shape: [coutBlocks, howo, 16]
        dstCO1Size = coutBlocks * howoRound * 16;

        fmRepeat = featureMapA2Size / (16 * C0);
        weRepeat = weightB2Size / (16 * C0);
    }
    __aicore__ inline void Init(__gm__ uint8_t* fmGm, __gm__ uint8_t* weGm, __gm__ uint8_t* biasGm,
        __gm__ uint8_t* dstGm)
    {
        fmGlobal.SetGlobalBuffer((__gm__ fmap_T*)fmGm);
        weGlobal.SetGlobalBuffer((__gm__ weight_T*)weGm);
        biasGlobal.SetGlobalBuffer((__gm__ dstCO1_T*)biasGm);
        dstGlobal.SetGlobalBuffer((__gm__ dst_T*)dstGm);
        pipe.InitBuffer(inQueueFmA1, 1, featureMapA1Size * sizeof(fmap_T));
        pipe.InitBuffer(inQueueFmA2, 1, featureMapA2Size * sizeof(fmap_T));
        pipe.InitBuffer(inQueueWeB1, 1, weightA1Size * sizeof(weight_T));
        pipe.InitBuffer(inQueueWeB2, 1, weightB2Size * sizeof(weight_T));
        pipe.InitBuffer(outQueueCO1, 1, dstCO1Size * sizeof(dstCO1_T));
    }
    __aicore__ inline void Process()
    {
        CopyIn();
        Split();
        Compute();
        CopyOut();
    }

private:
    __aicore__ inline void CopyIn()
    {
        AscendC::LocalTensor<fmap_T> featureMapA1 = inQueueFmA1.AllocTensor<fmap_T>();
        AscendC::LocalTensor<weight_T> weightB1 = inQueueWeB1.AllocTensor<weight_T>();

        AscendC::DataCopy(featureMapA1, fmGlobal, { 1, static_cast<uint16_t>(featureMapA1Size * sizeof(fmap_T) / 32), 0, 0 });
        AscendC::DataCopy(weightB1, weGlobal, { 1, static_cast<uint16_t>(weightA1Size * sizeof(weight_T) / 32), 0, 0 });

        inQueueFmA1.EnQue(featureMapA1);
        inQueueWeB1.EnQue(weightB1);
    }
    __aicore__ inline void Split()
    {    
        AscendC::LocalTensor<fmap_T> featureMapA1 = inQueueFmA1.DeQue<fmap_T>();
        AscendC::LocalTensor<weight_T> weightB1 = inQueueWeB1.DeQue<weight_T>();
        AscendC::LocalTensor<fmap_T> featureMapA2 = inQueueFmA2.AllocTensor<fmap_T>();
        AscendC::LocalTensor<weight_T> weightB2 = inQueueWeB2.AllocTensor<weight_T>();

        uint8_t padList[PAD_SIZE] = {0, 0, 0, 0};
        AscendC::SetFmatrix(H, W, padList, FmatrixMode::FMATRIX_LEFT);
        AscendC::SetLoadDataPaddingValue(0);
        AscendC::SetLoadDataRepeat({0, 1, 0});
        AscendC::SetLoadDataBoundary((uint32_t)0);
        static constexpr AscendC::IsResetLoad3dConfig LOAD3D_CONFIG = {false,false};
        AscendC::LoadData<fmap_T, LOAD3D_CONFIG>(featureMapA2, featureMapA1,
            { padList, H, W, channelSize, k, howoRound, 0, 0, 1, 1, Kw, Kh, dilationW, dilationH, false, false, 0 });
        AscendC::LoadData(weightB2, weightB1, { 0, weRepeat, 1, 0, 0, false, 0 });

        inQueueFmA2.EnQue<fmap_T>(featureMapA2);
        inQueueWeB2.EnQue<weight_T>(weightB2);
        inQueueFmA1.FreeTensor(featureMapA1);
        inQueueWeB1.FreeTensor(weightB1);
    }
    __aicore__ inline void Compute()
    {
        AscendC::LocalTensor<fmap_T> featureMapA2 = inQueueFmA2.DeQue<fmap_T>();
        AscendC::LocalTensor<weight_T> weightB2 = inQueueWeB2.DeQue<weight_T>();
        AscendC::LocalTensor<dstCO1_T> dstCO1 = outQueueCO1.AllocTensor<dstCO1_T>();

        AscendC::Mmad(dstCO1, featureMapA2, weightB2, { m, n, k, true, 0, false, false, false });

        outQueueCO1.EnQue<dstCO1_T>(dstCO1);
        inQueueFmA2.FreeTensor(featureMapA2);
        inQueueWeB2.FreeTensor(weightB2);
    }
    __aicore__ inline void CopyOut()
    {
        AscendC::LocalTensor<dstCO1_T> dstCO1 = outQueueCO1.DeQue<dstCO1_T>();
        AscendC::FixpipeParamsV220 fixpipeParams;
        fixpipeParams.nSize = coutBlocks * 16;
        fixpipeParams.mSize = howo;
        fixpipeParams.srcStride = howo;
        fixpipeParams.dstStride = howo * AscendC::BLOCK_CUBE * sizeof(dst_T) / AscendC::ONE_BLK_SIZE;
        fixpipeParams.quantPre = deqMode;
        AscendC::Fixpipe<dst_T, dstCO1_T, AscendC::CFG_NZ>(dstGlobal, dstCO1, fixpipeParams);
        outQueueCO1.FreeTensor(dstCO1);
    }

private:
    AscendC::TPipe pipe;
    // feature map queue
    AscendC::TQue<AscendC::QuePosition::A1, 1> inQueueFmA1;
    AscendC::TQue<AscendC::QuePosition::A2, 1> inQueueFmA2;
    // weight queue
    AscendC::TQue<AscendC::QuePosition::B1, 1> inQueueWeB1;
    AscendC::TQue<AscendC::QuePosition::B2, 1> inQueueWeB2;
    // dst queue
    AscendC::TQue<AscendC::QuePosition::CO1, 1> outQueueCO1;

    AscendC::GlobalTensor<fmap_T> fmGlobal;
    AscendC::GlobalTensor<weight_T> weGlobal;
    AscendC::GlobalTensor<dst_T> dstGlobal;
    AscendC::GlobalTensor<dstCO1_T> biasGlobal;

    uint16_t channelSize = 32;
    uint16_t H = 4, W = 4;
    uint8_t Kh = 2, Kw = 2;
    uint16_t Cout = 16;
    uint16_t C0, C1;
    uint8_t dilationH = 2, dilationW = 2;

    uint16_t coutBlocks, ho, wo, howo, howoRound;
    uint32_t featureMapA1Size, weightA1Size, featureMapA2Size, weightB2Size, biasSize, dstSize, dstCO1Size;
    uint16_t m, k, n;
    uint8_t fmRepeat, weRepeat;
    AscendC::QuantMode_t deqMode = AscendC::QuantMode_t::F322F16;
};

extern "C" __global__ __aicore__ void load3d_simple_kernel(__gm__ uint8_t *fmGm, __gm__ uint8_t *weGm,
    __gm__ uint8_t *biasGm, __gm__ uint8_t *dstGm)
{
    KernelLoad3d<dst_type, fmap_type, weight_type, dstCO1_type> op;
    op.Init(fmGm, weGm, biasGm, dstGm);
    op.Process();
}
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词