下载
中文
注册

aclnnQuantMatmulAllReduce

支持的产品型号

  • Atlas A2训练系列产品/Atlas 800I A2推理产品。

说明: 使用该接口时,请确保驱动固件包和CANN包都为配套的8.0.RC2版本或者配套的更高版本,否则将会引发报错,比如BUS ERROR等。

接口原型

每个算子分为两段式接口,必须先调用“aclnnQuantMatmulAllReduceGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnQuantMatmulAllReduce”接口执行计算。

  • aclnnStatus aclnnQuantMatmulAllReduceGetWorkspaceSize(const aclTensor *x1, const aclTensor *x2, const aclTensor *bias, const aclTensor *x3, const aclTensor *dequantScale, const char* group, const char *reduceOp, int64_t commTurn, int64_t streamMode, const aclTensor *output, uint64_t *workspaceSize, aclOpExecutor **executor);
  • aclnnStatus aclnnQuantMatmulAllReduce(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream);

功能描述

  • 算子功能:对量化后的入参x1、x2进行matmul计算后,接着进行dequant计算,接着与x3进行add操作,最后做all_reduce计算。
  • 计算公式output=allReduce(dequantScale(x1int8@x2int8+biasint32)+x3)output= allReduce(dequantScale*(x1_{int8}@x2_{int8} + bias_{int32}) + x3)

aclnnQuantMatmulAllReduceGetWorkspaceSize

  • 参数说明:

    • x1(aclTensor*, 计算输入):公式中的输入x1,数据类型支持INT8,数据格式支持ND,不支持非连续输入。Device侧的aclTensor,mm左矩阵,当前版本仅支持二维或者三维输入。
    • x2(aclTensor*, 计算输入):公式中的输入x2,数据类型支持INT8,Device侧的aclTensor,mm右矩阵。当x2的Format为FRACTAL_NZ时,配合aclnnCalculateMatmulWeightSizeV2aclnnTransMatmulWeight完成输入ND到NZ的转换,非连续的tensor仅支持transpose场景。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据格式支持ND(当前版本仅支持二维输入)和FRACTAL_NZ格式(当前版本仅支持四维输入)。
    • bias(aclTensor*, 计算输入):公式中的输入bias,数据类型支持INT32,数据格式支持ND。Device侧的aclTensor,可选,可为空。当前版本仅支持一维输入。
    • x3(aclTensor*, 计算输入):公式中的输入x3,数据格式支持ND。Device侧的aclTensor,matmul计算后的add计算,维度与output一致,可选,可为空。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT16、BFLOAT16。
    • dequantScale(aclTensor*, 计算输入):公式中的输入dequantScale,数据格式支持ND。matmul计算后的去量化系数,可选,可为空,shape在per-tensor场景为[1],per-channel场景为[n]/[1, n]。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持INT64、UINT64、BFLOAT16。
    • group(char*, 计算输入):通信域名称,数据类型支持String,通过Hccl提供的接口获取:extern HcclResult HcclGetCommName(HcclComm comm, char* commName); commName即为group。
    • reduceOp(char*, 计算输入):reduce操作类型,数据类型支持String,当前版本仅支持"sum"。
    • commTurn(int64_t, 计算输入):通信数据切分数,数据类型支持int64_t,即总数据量/单次通信量。当前版本仅支持输入为0。
    • streamMode(int64_t, 计算输入):Host侧的整型,数据类型支持int64_t,AscendCL流模式的枚举,当前只支持枚举值1。
    • output(aclTensor *, 输出):公式中的输出output。Device侧的aclTensor,计算+通信的结果。
      • Atlas A2训练系列产品/Atlas 800I A2推理产品:数据类型支持FLOAT16、BFLOAT16。
    • workspaceSize(uint64_t *, 出参):返回需要在Device侧申请的workspace大小。
    • executor(aclOpExecutor **, 出参):返回op执行器,包含了算子计算流程。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

aclnnQuantMatmulAllReduce

  • 参数说明:

    • workspace(void*,入参):在Device侧申请的workspace内存地址。
    • workspaceSize(uint64_t,入参):在Device侧申请的workspace大小,由第一段接口aclnnQuantMatmulAllReduceGetWorkspaceSize获取。
    • executor(aclOpExecutor*,入参):op执行器,包含了算子计算流程。
    • stream(aclrtStream,入参):指定执行任务的AscendCL stream流。
  • 返回值:

    返回aclnnStatus状态码,具体参见aclnn返回码

约束与限制

  • 增量场景不使能MC2,全量场景使能MC2。
  • 输入x1可为二维或者三维,其维度为(b, s, k)或者(m, k)。
  • x2必须是二维。其维度为(k, n),k轴满足mm算子入参要求,k轴相等。
  • 不支持x1、x2为空矩阵。
  • m大小不超过2147483647,x1与x2的最后一维大小不超过65535,x1的最后一维指k,x2的最后一维指转置时的k或非转置时的n。bias若非空,维度为(n)。x3若非空,shape大小与output相等。
  • 当输入x1维度为(b, s, k)时,输出output维度为(b, s, n),当输入x1维度为(m, k)时,输出output维度为(m, n)。
  • 传入的x1、x2、dequantScale或者output不为空指针。
  • x1和x2、dequantScale、output、bias(非空场景)、x3(非空场景)的数据类型和数据格式需要在支持的范围之内。
  • 若输出output类型为FLOAT16,dequantScale的类型为INT64、UINT64;若输出output类型为BFLOAT16,dequantScale的类型为BFLOAT16,x3的类型为BFLOAT16。
  • streamMode的数据在可选范围内,目前仅支持1。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品:只支持x2矩阵转置/不转置,x1矩阵不支持转置场景。
  • Atlas A2训练系列产品/Atlas 800I A2推理产品:支持1、2、4、8卡,并且仅支持hccs链路all mesh组网。
  • 一个模型中的通算融合MC2算子,仅支持相同通信域。

调用示例

Atlas A2训练系列产品/Atlas 800I A2推理产品:示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例

#include <iostream>
#include <vector>
#include <thread>
#include "aclnnop/aclnn_trans_matmul_weight.h"
#include "aclnnop/aclnn_quant_matmul_all_reduce.h"

int ndev = 8;

#define ACL_CHECK(ret)                                                                                     \
    do {                                                                                                   \
        auto retcode = ret;                                                                                \
        if (retcode != ACL_SUCCESS) {                                                                      \
            printf("[ERROR] acl interface return err %s:%d, retcode: %d \n", __FILE__, __LINE__, retcode); \
            return retcode;                                                                                \
        }                                                                                                  \
    } while (0)

#define CHECK_RET(cond, return_expr) \
do {                               \
    if (!(cond)) {                   \
    return_expr;                   \
    }                                \
} while (0)

#define LOG_PRINT(message, ...)     \
do {                              \
    printf(message, ##__VA_ARGS__); \
} while (0)

struct Args {
    uint32_t rankId;
    HcclComm hcclComm;
    aclrtStream stream;
    aclrtContext context;
    std::string format;
};

int64_t GetShapeSize(const std::vector<int64_t> &shape) {
    int64_t shapeSize = 1;
    for (auto i: shape) {
        shapeSize *= i;
    }
    return shapeSize;
}

template<typename T>
int CreateWeightNzAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
                            aclDataType dataType, aclTensor **tensor, Args &args) {
    auto size = GetShapeSize(shape) * sizeof(T);
    const aclIntArray *mat2Size = aclCreateIntArray(shape.data(), shape.size());
    auto ret = aclnnCalculateMatmulWeightSizeV2(mat2Size, ACL_INT8, &size);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSizeV2 failed. ERROR: %d\n", ret); return ret);
    auto tensorSize = size * sizeof(T);

    // 调用aclrtMalloc申请device内存
    ret = aclrtMalloc(deviceAddr, tensorSize, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);

    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);

    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }
    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
    
    uint64_t transWorkspaceSize;
    aclOpExecutor *executor;
    void *transWorkspaceAddr = nullptr;
    ret = aclnnTransMatmulWeightGetWorkspaceSize(*tensor, &transWorkspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS && transWorkspaceSize > 0, 
            printf("[ERROR] aclnnTransMatmulWeightGetWorkspaceSize failed. ret = %d \n", ret); return ret);
    ACL_CHECK(aclrtMalloc(&transWorkspaceAddr, transWorkspaceSize, ACL_MEM_MALLOC_HUGE_FIRST));
    ret = aclnnTransMatmulWeight(transWorkspaceAddr, transWorkspaceSize, executor, args.stream);
    CHECK_RET(ret == ACL_SUCCESS, printf("[ERROR] aclnnTransMatmulWeight failed. ret = %d \n", ret);return ret);
    ACL_CHECK(aclrtSynchronizeStreamWithTimeout(args.stream, 20000));

    return 0;
}

template<typename T>
int CreateAclTensor(const std::vector<T> &hostData, const std::vector<int64_t> &shape, void **deviceAddr,
                    aclDataType dataType, aclTensor **tensor) {
    auto size = GetShapeSize(shape) * sizeof(T);
    // 调用aclrtMalloc申请device侧内存
    auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
    // 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
    ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
    // 计算连续tensor的strides
    std::vector<int64_t> strides(shape.size(), 1);
    for (int64_t i = shape.size() - 2; i >= 0; i--) {
        strides[i] = shape[i + 1] * strides[i + 1];
    }
    // 调用aclCreateTensor接口创建aclTensor
    *tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
                            shape.data(), shape.size(), *deviceAddr);
    return 0;
}

int launchOneThreadQuantMatmulAllReduce(Args &args) {
    int ret;
    ret = aclrtSetCurrentContext(args.context);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetCurrentContext failed. ERROR: %d\n", ret); return ret);
    char hcom_name[128];
    ret = HcclGetCommName(args.hcclComm, hcom_name);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("[ERROR] HcclGetCommName failed. ret = %d \n", ret); return -1);
    LOG_PRINT("[INFO] rank %d hcom: %s stream: %p, context : %p\n", args.rankId, hcom_name, args.stream,
            args.context);

    std::vector<int64_t> x1Shape = {32, 64};
    std::vector<int64_t> x2Shape = {64, 128};
    std::vector<int64_t> biasShape = {128};
    std::vector<int64_t> dequantScaleShape = {128};
    std::vector<int64_t> x3Shape = {32, 128};
    std::vector<int64_t> outShape = {32, 128};
    void *x1DeviceAddr = nullptr;
    void *x2DeviceAddr = nullptr;
    void *biasDeviceAddr = nullptr;
    void *dequantScaleDeviceAddr = nullptr;
    void *x3DeviceAddr = nullptr;
    void *outDeviceAddr = nullptr;
    aclTensor *x1 = nullptr;
    aclTensor *x2 = nullptr;
    aclTensor *bias = nullptr;
    aclTensor *dequantScale = nullptr;
    aclTensor *x3 = nullptr;
    aclTensor *out = nullptr;

    int64_t commTurn = 0;
    int64_t streamMode = 1;
    uint64_t workspaceSize = 0;
    aclOpExecutor *executor;
    void *workspaceAddr = nullptr;

    long long x1ShapeSize = GetShapeSize(x1Shape);
    long long x2ShapeSize = GetShapeSize(x2Shape);
    long long biasShapeSize = GetShapeSize(biasShape);
    long long dequantScaleShapeSize = GetShapeSize(dequantScaleShape);
    long long x3ShapeSize = GetShapeSize(x3Shape);
    long long outShapeSize = GetShapeSize(outShape);

    std::vector<int8_t> x1HostData(x1ShapeSize, 0);
    std::vector<int8_t> x2HostData(x2ShapeSize, 0);
    std::vector<int32_t> biasHostData(biasShapeSize, 0);
    std::vector<uint64_t> dequantScaleHostData(dequantScaleShapeSize, 0);
    std::vector<int16_t> x3HostData(x3ShapeSize, 0);
    std::vector<int16_t> outHostData(outShapeSize, 0);
    // 创建 tensor
    ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    if (args.format == "NZ") {
        ret = CreateWeightNzAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2, args);
    } else {
        ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2);
    }
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(dequantScaleHostData, dequantScaleShape, &dequantScaleDeviceAddr,
                        aclDataType::ACL_UINT64, &dequantScale);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(x3HostData, x3Shape, &x3DeviceAddr, aclDataType::ACL_FLOAT16, &x3);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
    CHECK_RET(ret == ACL_SUCCESS, return ret);
    // 调用第一段接口
    ret = aclnnQuantMatmulAllReduceGetWorkspaceSize(x1, x2, bias, x3, dequantScale, hcom_name, "sum", commTurn, streamMode, out,
                                        &workspaceSize, &executor);
    CHECK_RET(ret == ACL_SUCCESS,
            LOG_PRINT("aclnnQuantMatmulAllReduceGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
    // 根据第一段接口计算出的workspaceSize申请device内存
    if (workspaceSize > 0) {
        ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
    }
    // 调用第二段接口
    ret = aclnnQuantMatmulAllReduce(workspaceAddr, workspaceSize, executor, args.stream);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulAllReduce failed. ERROR: %d\n", ret); return ret);
    //(固定写法)同步等待任务执行结束
    ret = aclrtSynchronizeStreamWithTimeout(args.stream, 10000);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
    LOG_PRINT("device%d aclnnQuantMatmulAllReduce execute success \n", args.rankId);
    // 释放device资源,需要根据具体API的接口定义修改
    if (x1 != nullptr) {
        aclDestroyTensor(x1);
    }
    if (x2 != nullptr) {
        aclDestroyTensor(x2);
    }
    if (bias != nullptr) {
        aclDestroyTensor(bias);
    }
    if (dequantScale != nullptr) {
        aclDestroyTensor(dequantScale);
    }
    if (x3 != nullptr) {
        aclDestroyTensor(x3);
    }
    if (out != nullptr) {
        aclDestroyTensor(out);
    }
    if (x1DeviceAddr != nullptr) {
        aclrtFree(x1DeviceAddr);
    }
    if (x2DeviceAddr != nullptr) {
        aclrtFree(x2DeviceAddr);
    }
    if (biasDeviceAddr != nullptr) {
        aclrtFree(biasDeviceAddr);
    }
    if (dequantScaleDeviceAddr != nullptr) {
        aclrtFree(dequantScaleDeviceAddr);
    }
    if (x3DeviceAddr != nullptr) {
        aclrtFree(x3DeviceAddr);
    }
    if (outDeviceAddr != nullptr) {
        aclrtFree(outDeviceAddr);
    }
    if (workspaceSize > 0) {
        aclrtFree(workspaceAddr);
    }
    aclrtDestroyStream(args.stream);
    HcclCommDestroy(args.hcclComm);
    aclrtDestroyContext(args.context);
    aclrtResetDevice(args.rankId);
    return 0;
}

int main(int argc, char *argv[]) {
    int ret;
    int32_t devices[ndev];
    for (int i = 0; i < ndev; i++) {
        devices[i] = i;
    }
    HcclComm comms[128];
    ret = aclInit(nullptr);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
    // 初始化集合通信域
    for (int i = 0; i < ndev; i++) {
        ret = aclrtSetDevice(devices[i]);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
    }
    ret = HcclCommInitAll(ndev, devices, comms);
    CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("HcclCommInitAll failed. ERROR: %d\n", ret); return ret);
    Args args[ndev];
    aclrtStream stream[ndev];
    aclrtContext context[ndev];
    for (uint32_t rankId = 0; rankId < ndev; rankId++) {
        ret = aclrtSetDevice(rankId);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
        ret = aclrtCreateContext(&context[rankId], rankId);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateContext failed. ERROR: %d\n", ret); return ret);
        ret = aclrtCreateStream(&stream[rankId]);
        CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
    }
    // 启动多线程
    std::vector<std::unique_ptr<std::thread>> threads(ndev);
    for (uint32_t rankId = 0; rankId < ndev; rankId++) {
        args[rankId].rankId = rankId;
        args[rankId].hcclComm = comms[rankId];
        args[rankId].stream = stream[rankId];
        args[rankId].context = context[rankId];
        threads[rankId].reset(
                new(std::nothrow) std::thread(&launchOneThreadQuantMatmulAllReduce, std::ref(args[rankId])));
    }
    for (uint32_t rankId = 0; rankId < ndev; rankId++) {
        threads[rankId]->join();
    }
    aclFinalize();
    return 0;
}