aclnnQuantMatmul
该接口后续版本会废弃,请使用最新接口aclnnQuantMatmulV4,接口迁移方法参考本文档约束与限制。
支持的产品型号
Atlas A2 训练系列产品/Atlas 800I A2 推理产品 。
接口原型
每个算子分为两段式接口,必须先调用“aclnnQuantMatmulGetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnQuantMatmul”接口执行计算。
aclnnStatus aclnnQuantMatmulGetWorkspaceSize(const aclTensor *x1, const aclTensor *x2, const aclTensor *bias, float deqScale, aclTensor *out, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnQuantMatmul(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
功能描述
算子功能:完成量化的矩阵乘计算,最小支持维度为2维,最大支持输入维度为3维。
相似接口有aclnnMm(仅支持2维Tensor作为输入的矩阵乘)和aclnnBatchMatMul(仅支持三维的矩阵乘,其中第一维是Batch维度)。
计算公式:
aclnnQuantMatmulGetWorkspaceSize
参数说明
- x1(aclTensor*, 计算输入):Device侧的2维至3维aclTensor,维度与x2一致,不支持broadcast,数据格式支持ND,数据类型支持INT8,且数据类型需要与x2满足数据类型推导规则。各个维度表示:(batch,m,k),batch可不存在。
- x2(aclTensor*, 计算输入):Device侧的2维至3维aclTensor,维度与x1一致,不支持broadcast,数据格式支持ND,数据类型支持INT8,且数据类型需要与x1满足数据类型推导规则。各个维度表示:(batch,k,n),batch可不存在,其中k与x1的shape中的k一致。
- bias(aclTensor*, 计算输入):Device侧的1维Tensor,shape支持一维(n, ),n与x2的n一致。公式输入bias,数据类型支持INT32,数据格式支持ND。该Bias是经过量化特殊处理过的Bias。 量化特殊处理过程:
- deqScale(float, 计算输入):公式中的输入depScale,量化参数。
- out(aclTensor*, 计算输出):Device侧的aclTensor,数据类型支持FLOAT16,Shape需要是x1与x2经过推导之后的Shape,数据格式支持ND。
- workspaceSize(uint64_t *, 出参):返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor **, 出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校检,出现以下场景时报错: 161001(ACLNN_ERR_PARAM_NULLPTR): 1. 传入的x1、x2或out是空指针。 161002(ACLNN_ERR_PARAM_INVALID): 1. x1、x2、bias或out的数据类型/数据格式/维度不在支持的范围之内。 2. x1和x2的数据类型无法做数据类型推导。 3. x1和x2的输入shape不满足矩阵乘关系。 4. x2与bias的shape不一致。 5. bias存在且m和n均不为0但k为0的空tensor。
aclnnQuantMatmul
参数说明:
- workspace(void *, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnQuantMatmulGetWorkspaceSize获取。
- executor(aclOpExecutor *, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值: aclnnStatus: 返回状态码,具体参见aclnn返回码。
约束与限制
该接口迁移到aclnnQuantMatmulV4接口的方法:
- 输入x1,x2,bias可以直接转为aclnnQuantMatmulV4接口中的x1,x2,bias。
- 输入deqScale为FLOAT型,将这个FLOAT数构造成shape为(1,)的FLOAT型aclTensor(参考调用示例中的CreateAclTensor), 再利用aclnnTransQuantParamV2转为shape为(1,)的uint64_t的aclTensor(参考aclnnQuantMatmulV4调用示例),记为scale,对标aclnnQuantMatmulV4接口中的scale。
- aclnnQuantMatmulV4接口中的可选输入offset/pertokenScaleOptional设置为nullptr,transposeX1和transposeX2均设置为false。
- 接口参数设置为
aclnnQuantMatmulV4GetWorkspaceSize(x1, x2, scale, nullptr, nullptr, bias, false, false, out, workspaceSize, executor)
。
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include <memory>
#include "acl/acl.h"
#include "aclnnop/aclnn_quant_matmul.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define CHECK_FREE_RET(cond, return_expr) \
do { \
if (!(cond)) { \
Finalize(deviceId, stream);\
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
void Finalize(int32_t deviceId, aclrtStream stream) {
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
}
int aclnnQuantMatmulTest(int32_t deviceId, aclrtStream &stream) {
auto ret = Init(deviceId, &stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> x1Shape = {2, 2};
std::vector<int64_t> x2Shape = {2, 2};
std::vector<int64_t> biasShape = {2};
std::vector<int64_t> outShape = {2, 2};
void* x1DeviceAddr = nullptr;
void* x2DeviceAddr = nullptr;
void* biasDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* x1 = nullptr;
aclTensor* x2 = nullptr;
aclTensor* bias = nullptr;
aclTensor* out = nullptr;
std::vector<int8_t> x1HostData{1, 1, 1, 1};
std::vector<int8_t> x2HostData{1, 1, 1, 1};
std::vector<int32_t> biasHostData{1, 1, 1, 1};
std::vector<uint16_t> outHostData{1, 1, 1, 1}; // 实际上是float16半精度方式
// 创建x1 aclTensor
ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree);
CHECK_FREE_RET(ret == ACL_SUCCESS, return ret);
// 创建other aclTensor
ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2TensorPtr(x2, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x2DeviceAddrPtr(x2DeviceAddr, aclrtFree);
CHECK_FREE_RET(ret == ACL_SUCCESS, return ret);
ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree);
CHECK_FREE_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree);
CHECK_FREE_RET(ret == ACL_SUCCESS, return ret);
float deqScale = 1.0f;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnQuantMatmul第一段接口
ret = aclnnQuantMatmulGetWorkspaceSize(x1, x2, bias, deqScale, out, &workspaceSize, &executor);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtr(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtr.reset(workspaceAddr);
}
// 调用aclnnQuantMatmul第二段接口
ret = aclnnQuantMatmul(workspaceAddr, workspaceSize, executor, stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmul failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> resultData(size, 0);
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %f\n", i, resultData[i]);
}
return ACL_SUCCESS;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = aclnnQuantMatmulTest(deviceId, stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulTest failed. ERROR: %d\n", ret); return ret);
Finalize(deviceId, stream);
return 0;
}