aclnnQuantMatmulV3
支持的产品型号
- Atlas A2训练系列产品/Atlas 800I A2推理产品
- Atlas 推理系列产品
接口原型
每个算子分为两段式接口,必须先调用“aclnnQuantMatmulV3GetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnQuantMatmulV3”接口执行计算。
aclnnStatus aclnnQuantMatmulV3GetWorkspaceSize(const aclTensor* x1, const aclTensor* x2, const aclTensor* scale, const aclTensor* offset, const aclTensor* bias, bool transposeX1, bool transposeX2, const aclTensor* out, uint64_t* workspaceSize, aclOpExecutor** executor)
aclnnStatus aclnnQuantMatmulV3(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, aclrtStream stream)
功能描述
算子功能:完成量化的矩阵乘计算,最小支持输入维度为2维,最大支持输入维度为6维。相似接口有aclnnMm(仅支持2维Tensor作为输入的矩阵乘)和aclnnBatchMatMul(仅支持三维的矩阵乘,其中第一维是Batch维度)。
计算公式:
无bias:
bias int32:
bias bfloat16(此场景无offset):
aclnnQuantMatmulV3GetWorkspaceSize
参数说明:
x1(const aclTensor*,计算输入):公式中的输入x1,数据类型支持INT8、INT32、INT4,支持最后两根轴转置情况下的非连续tensor,其他场景的非连续的Tensor不支持,数据格式支持ND,shape最少是2维,最多是6维,在transposeX1为false情况下各个维度表示:(batch,m,k),batch可不存在。当数据类型为INT32、INT4时,为INT4量化场景,当前仅支持Atlas A2训练系列产品/Atlas 800I A2推理产品,transposeX1为false情况。其中当x1数据类型为INT4时,维度表示:(batch, m, k),要求k为偶数,当x1数据类型为INT32时,每个INT32数据存放8个INT4数据,对应维度表示:(batch, m, k // 8),要求k为8的倍数。
x2(const aclTensor*,计算输入):公式中的输入x2,数据类型支持INT8、INT32、INT4,支持最后两根轴转置情况下的非连续tensor,其他场景的非连续的Tensor不支持,数据格式支持ND格式和昇腾亲和数据排布格式。当数据类型为INT32、INT4时,为INT4量化场景,当前仅支持Atlas A2训练系列产品/Atlas 800I A2推理产品,2维ND格式。
- ND格式下,shape最少是2维,最多是6维,在transposeX2为false情况下各个维度表示:(batch,k,n),batch可不存在,其中k与x1的shape中的k一致。
- 昇腾亲和数据排布格式下,shape最少是4维,最多是8维。在transposeX2为true情况下各个维度表示:(batch,k1,n1, n0, k0),batch可不存在,其中k0 = 32, n0 = 16, x1 shape中的k和x2 shape中的k1需要满足以下关系:ceilDiv(k,32) = k1。在transposeX2为false情况下各个维度表示:(batch,n1,k1, k0, n0),batch可不存在,其中k0 = 16, n0 = 32, x1 shape中的k和x2 shape中的k1需要满足以下关系:ceilDiv(k,16) = k1。 可使用aclnnCalculateMatmulWeightSizeV2接口以及aclnnTransMatmulWeight接口完成输入Format从ND到昇腾亲和数据排布格式的转换。(当输入x2为昇腾亲和数据排布格式时,当前Atlas 推理系列产品上QuantBatchMatmulV3算子不支持transposeX2为false的场景)
- 数据类型为INT4时,在transposeX2为true情况下各个维度表示:(n, k),要求k为偶数;在transposeX2为false情况下各个维度表示:(k, n),要求n为偶数。数据类型为INT32时,每个INT32数据存放8个INT4数据,在transposeX2为true情况下各个维度表示:(n, k // 8),要求k为8的倍数;在transposeX2为false情况下各个维度表示:(k, n // 8),要求n为8的倍数。 可使用aclnnConvertWeightToINT4Pack接口完成x2从INT32(1个int32在0~3bit位存储1个int4)到INT32(1个int32存储8个int4)或INT4(1个int4表示1个int4)的数据格式转换,具体参见aclnnConvertWeightToINT4Pack接口。
scale(const aclTensor*,计算输入):公式中的输入scale,量化参数,数据类型支持UINT64,INT64,FLOAT32,BFLOAT16,数据格式支持ND,shape是1维(t,),t = 1或n,其中n与x2的n一致。
- 输出为INT8、FLOAT16时,需要提前调用TransQuantParamV2算子的aclnn接口来将scale转成INT64、UINT64数据类型。
- 输出为BFLOAT16时,直接将BFLOAT16或FLOAT32类型的scale传入本接口,其中BFLOAT16仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持。
offset(const aclTensor*,计算输入):公式中的输入offset,可选量化参数,数据类型支持FLOAT32,数据格式支持ND,shape是1维(t,),t = 1或n,其中n与x2的n一致。
bias(const aclTensor*,计算输入):公式中的输入bias,数据类型支持INT32,BFLOAT16,数据格式支持ND,shape支持1维(n,)或3维(batch,1,n),n与x2的n一致。
transposeX1(bool,计算输入):表示x1的输入shape是否包含transpose,默认是false,若为true,x1的shape表示为(batch,k,m),batch可不存在。
transposeX2(bool,计算输入):表示x2的输入shape是否包含transpose,默认是false,若为true,x2的shape表示为(batch,n,k),batch可不存在。
out(aclTensor*, 计算输出):公式中的输出out,数据类型支持FLOAT16,INT8,BFLOAT16,支持非连续的Tensor,数据格式支持ND,shape最少是2维,最多是6维,(batch,m,n),batch可不存在,支持x1与x2的batch维度broadcast,输出batch与broadcast之后的batch一致,m与x1的m一致,n与x2的n一致。其中BFLOAT16仅Atlas A2训练系列产品/Atlas 800I A2推理产品支持。
workspaceSize(uint64_t*, 出参):返回需要在Device侧申请的workspace大小。
executor(aclOpExecutor**, 出参):返回op执行器,包含了算子计算流程。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
第一段接口完成入参校验,出现以下场景时报错: - 161001(ACLNN_ERR_PARAM_NULLPTR):1. 传入的x1、x2、scale或out是空指针。 - 161002(ACLNN_ERR_PARAM_INVALID): 1. x1、x2、bias、scale、offset或out的数据类型和数据格式不在支持的范围之内。 2. x1、x2、bias、scale、offset或out的shape不满足校验条件。 3. x1不在2-6维范围。x2在ND格式下,shape不在2-6维范围;x2在昇腾亲和数据排布格式下,shape不在4-8维范围。 4. offset、scale的shape不是1维。 5. bias的shape在out是2,4,5,6维的情况下不为1维,在out是3维的情况下不为1维或3维。 6. 当out为bfloat16时,scale的dtype不为bfloat16或float32; 当scale的dtype为bfloat16时,out不为bfloat16。(Atlas 推理系列产品不支持bfloat16数据类型) 7. 当bias的dtype为bfloat16时,out的dtype不为bfloat16。(Atlas 推理系列产品不支持bfloat16数据类型) 8. 当输出为float16或bfloat16数据类型时,offset不为空。 9. x1与x2的最后一维大小超过65535,x1的最后一维指transposeX1为true时的m或transposeX1为false时的k,x2的最后一维指transposeX2为true时的k或transposeX2为false时的n。 10. 不支持空tensor。 11. x1和x2其中一个输入为int8时,另一输入不为int8。 12. x1和x2为int32或int4时,transposeX1不为false,x2不为2维,bias不为1维,out不为float16, x1和x2不为ND格式排布。 13. x1为int4时,x1的k不为偶数。x2为int4时,x2的最后一维不为偶数,x2的最后一维指transposeX2为true时的k或transposeX2为false时的n。
aclnnQuantMatmulV3
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnQuantMatmulV3GetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
无。
调用示例
示例代码如下(以Atlas A2训练系列产品/Atlas 800I A2推理产品为例),仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <memory>
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_quant_matmul_v3.h"
#include "aclnnop/aclnn_trans_quant_param_v2.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define CHECK_FREE_RET(cond, return_expr) \
do { \
if (!(cond)) { \
Finalize(deviceId, stream);\
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
void Finalize(int32_t deviceId, aclrtStream stream) {
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
}
int aclnnQuantMatmulV3Test(int32_t deviceId, aclrtStream &stream){
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> x1Shape = {5, 2};
std::vector<int64_t> x2Shape = {2, 3};
std::vector<int64_t> biasShape = {3};
std::vector<int64_t> offsetShape = {3};
std::vector<int64_t> scaleShape = {3};
std::vector<int64_t> outShape = {5, 3};
void* x1DeviceAddr = nullptr;
void* x2DeviceAddr = nullptr;
void* scaleDeviceAddr = nullptr;
void* quantParamDeviceAddr = nullptr;
void* offsetDeviceAddr = nullptr;
void* biasDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* x1 = nullptr;
aclTensor* x2 = nullptr;
aclTensor* bias = nullptr;
aclTensor* scale = nullptr;
aclTensor* quantParam = nullptr;
aclTensor* offset = nullptr;
aclTensor* out = nullptr;
std::vector<int8_t> x1HostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
std::vector<int8_t> x2HostData = {1, 1, 1, 1, 1, 1};
std::vector<int32_t> biasHostData = {1, 1, 1};
std::vector<float> scaleHostData = {1, 1, 1};
std::vector<float> offsetHostData = {1, 1, 1};
std::vector<uint16_t> outHostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; // 实际上是float16半精度方式
// 创建x1 aclTensor
ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建x2 aclTensor
ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2TensorPtr(x2, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x2DeviceAddrPtr(x2DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建scale aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> scaleTensorPtr(scale, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> scaleDeviceAddrPtr(scaleDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建quantParam aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &quantParamDeviceAddr, aclDataType::ACL_UINT64, &quantParam);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> quantParamTensorPtr(quantParam, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> quantParamDeviceAddrPtr(quantParamDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建offset aclTensor
ret = CreateAclTensor(offsetHostData, offsetShape, &offsetDeviceAddr, aclDataType::ACL_FLOAT, &offset);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> offsetTensorPtr(offset, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> offsetDeviceAddrPtr(offsetDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建bias aclTensor
ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
bool transposeX1 = false;
bool transposeX2 = false;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// FLOAT数据类型的scale需要提前调用TransQuantParamV2算子的aclnn接口
// 调用aclnnaclnnTransQuantParamV2第一段接口
ret = aclnnTransQuantParamV2GetWorkspaceSize(scale, offset, quantParam, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV2(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrV2.reset(workspaceAddr);
}
// 调用aclnnTransQuantParamV2第二段接口
ret = aclnnTransQuantParamV2(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2 failed. ERROR: %d\n", ret); return ret);
// 调用aclnnQuantMatmulV3第一段接口
ret = aclnnQuantMatmulV3GetWorkspaceSize(x1, x2, quantParam, nullptr, bias, transposeX1, transposeX2, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
workspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV3(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrV3.reset(workspaceAddr);
}
// 调用aclnnQuantMatmulV3第二段接口
ret = aclnnQuantMatmulV3(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3 failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<uint16_t> resultData(size, 0); // C语言中无法直接打印fp16的数据,需要用uint16读出来,自行通过二进制转成fp16
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]);
}
return ACL_SUCCESS;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = aclnnQuantMatmulV3Test(deviceId, stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3Test failed. ERROR: %d\n", ret); return ret);
Finalize(deviceId, stream);
return 0;
}
Atlas A2训练系列产品/Atlas 800I A2推理产品x2为昇腾亲和数据排布格式场景的示例代码如下(transposeX2=false),仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <memory>
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_quant_matmul_v3.h"
#include "aclnnop/aclnn_trans_matmul_weight.h"
#include "aclnnop/aclnn_permute.h"
#include "aclnnop/aclnn_trans_quant_param_v2.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define CHECK_FREE_RET(cond, return_expr) \
do { \
if (!(cond)) { \
Finalize(deviceId, stream);\
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
void Finalize(int32_t deviceId, aclrtStream stream) {
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
}
template <typename T>
int CreateAclTensorX2(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = static_cast<uint64_t>(GetShapeSize(shape));
const aclIntArray* mat2Size = aclCreateIntArray(shape.data(), shape.size());
auto ret = aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSizeV2 failed. ERROR: %d\n", ret); return ret);
size *= sizeof(T);
// 调用aclrtMalloc申请device侧内存
ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
std::vector<int64_t> storageShape;
storageShape.push_back(GetShapeSize(shape));
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
storageShape.data(), storageShape.size(), *deviceAddr);
return 0;
}
int aclnnQuantMatmulV3Test(int32_t deviceId, aclrtStream &stream){
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> x1Shape = {5, 2};
std::vector<int64_t> x2Shape = {2, 3};
std::vector<int64_t> biasShape = {3};
std::vector<int64_t> offsetShape = {3};
std::vector<int64_t> scaleShape = {3};
std::vector<int64_t> outShape = {5, 3};
void* x1DeviceAddr = nullptr;
void* x2DeviceAddr = nullptr;
void* scaleDeviceAddr = nullptr;
void* quantParamDeviceAddr = nullptr;
void* offsetDeviceAddr = nullptr;
void* biasDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* x1 = nullptr;
aclTensor* x2 = nullptr;
aclTensor* bias = nullptr;
aclTensor* scale = nullptr;
aclTensor* quantParam = nullptr;
aclTensor* offset = nullptr;
aclTensor* out = nullptr;
std::vector<int8_t> x1HostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
std::vector<int8_t> x2HostData = {1, 1, 1, 1, 1, 1};
std::vector<int32_t> biasHostData = {1, 1, 1};
std::vector<float> scaleHostData = {1, 1, 1};
std::vector<float> offsetHostData = {1, 1, 1};
std::vector<uint16_t> outHostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; // 实际上是float16半精度方式
// 创建x1 aclTensor
ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建昇腾亲和数据排布格式的x2 aclTensor
ret = CreateAclTensorX2(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2HPTensorPtr(x2, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x2HPDeviceAddrPtr(x2DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建scale aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> scaleTensorPtr(scale, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> scaleDeviceAddrPtr(scaleDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建quantParam aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &quantParamDeviceAddr, aclDataType::ACL_UINT64, &quantParam);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> quantParamTensorPtr(quantParam, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> quantParamDeviceAddrPtr(quantParamDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建offset aclTensor
ret = CreateAclTensor(offsetHostData, offsetShape, &offsetDeviceAddr, aclDataType::ACL_FLOAT, &offset);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> offsetTensorPtr(offset, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> offsetDeviceAddrPtr(offsetDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建bias aclTensor
ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
bool transposeX1 = false;
bool transposeX2 = false;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
// 调用aclnnTransMatmulWeight第一段接口
ret = aclnnTransMatmulWeightGetWorkspaceSize(x2, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeightGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrTrans.reset(workspaceAddr);
}
// 调用aclnnTransMatmulWeight第二段接口
ret = aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeight failed. ERROR: %d\n", ret); return ret);
// FLOAT数据类型的scale需要提前调用TransQuantParamV2算子的aclnn接口
// 调用aclnnaclnnTransQuantParamV2第一段接口
ret = aclnnTransQuantParamV2GetWorkspaceSize(scale, offset, quantParam, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
workspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV2(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrV2.reset(workspaceAddr);
}
// 调用aclnnTransQuantParamV2第二段接口
ret = aclnnTransQuantParamV2(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2 failed. ERROR: %d\n", ret); return ret);
// 调用aclnnQuantMatmulV3第一段接口
workspaceSize = 0;
ret = aclnnQuantMatmulV3GetWorkspaceSize(x1, x2, quantParam, nullptr, bias, transposeX1, transposeX2, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV3(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrV3.reset(workspaceAddr);
}
// 调用aclnnQuantMatmulV3第二段接口
ret = aclnnQuantMatmulV3(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3 failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<uint16_t> resultData(size, 0); // C语言中无法直接打印fp16的数据,需要用uint16读出来,自行通过二进制转成fp16
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]);
}
return ACL_SUCCESS;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = aclnnQuantMatmulV3Test(deviceId, stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3Test failed. ERROR: %d\n", ret); return ret);
Finalize(deviceId, stream);
return 0;
}
Atlas 推理系列产品x2为昇腾亲和数据排布格式场景的示例代码如下(transposeX2=true),仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <memory>
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_quant_matmul_v3.h"
#include "aclnnop/aclnn_trans_matmul_weight.h"
#include "aclnnop/aclnn_permute.h"
#include "aclnnop/aclnn_trans_quant_param_v2.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define CHECK_FREE_RET(cond, return_expr) \
do { \
if (!(cond)) { \
Finalize(deviceId, stream);\
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
void Finalize(int32_t deviceId, aclrtStream stream) {
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
}
template <typename T>
int CreateAclTensorX2(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = static_cast<uint64_t>(GetShapeSize(shape));
const aclIntArray* mat2Size = aclCreateIntArray(shape.data(), shape.size());
auto ret = aclnnCalculateMatmulWeightSizeV2(mat2Size, dataType, &size);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnCalculateMatmulWeightSizeV2 failed. ERROR: %d\n", ret); return ret);
size *= sizeof(T);
// 调用aclrtMalloc申请device侧内存
ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
std::vector<int64_t> storageShape;
storageShape.push_back(GetShapeSize(shape));
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
storageShape.data(), storageShape.size(), *deviceAddr);
return 0;
}
int aclnnQuantMatmulV3Test(int32_t deviceId, aclrtStream &stream){
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> x1Shape = {5, 2};
std::vector<int64_t> x2Shape = {2, 3};
std::vector<int64_t> x2TransposedShape = {3, 2};
std::vector<int64_t> biasShape = {3};
std::vector<int64_t> offsetShape = {3};
std::vector<int64_t> scaleShape = {3};
std::vector<int64_t> outShape = {5, 3};
void* x1DeviceAddr = nullptr;
void* x2DeviceAddr = nullptr;
void* x2TransposedDeviceAddr = nullptr;
void* scaleDeviceAddr = nullptr;
void* quantParamDeviceAddr = nullptr;
void* offsetDeviceAddr = nullptr;
void* biasDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* x1 = nullptr;
aclTensor* x2 = nullptr;
aclTensor* x2Transposed = nullptr;
aclTensor* bias = nullptr;
aclTensor* scale = nullptr;
aclTensor* quantParam = nullptr;
aclTensor* offset = nullptr;
aclTensor* out = nullptr;
std::vector<int8_t> x1HostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
std::vector<int8_t> x2HostData = {1, 1, 1, 1, 1, 1};
std::vector<int8_t> x2TransposedHostData = {1, 1, 1, 1, 1, 1};
std::vector<int32_t> biasHostData = {1, 1, 1};
std::vector<float> scaleHostData = {1, 1, 1};
std::vector<float> offsetHostData = {1, 1, 1};
std::vector<uint16_t> outHostData = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; // 实际上是float16半精度方式
// 创建x1 aclTensor
ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, aclDataType::ACL_INT8, &x1);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建昇腾亲和数据排布格式的x2 aclTensor
ret = CreateAclTensorX2(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT8, &x2);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2HPTensorPtr(x2, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x2HPDeviceAddrPtr(x2DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
//创建昇腾亲和数据排布格式的x2Transposed aclTensor
ret = CreateAclTensorX2(x2TransposedHostData, x2TransposedShape, &x2TransposedDeviceAddr, aclDataType::ACL_INT8, &x2Transposed);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2TransposedHPTensorPtr(x2Transposed, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x2TransposedHPDeviceAddrPtr(x2TransposedDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建scale aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> scaleTensorPtr(scale, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> scaleDeviceAddrPtr(scaleDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建quantParam aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &quantParamDeviceAddr, aclDataType::ACL_UINT64, &quantParam);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> quantParamTensorPtr(quantParam, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> quantParamDeviceAddrPtr(quantParamDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建offset aclTensor
ret = CreateAclTensor(offsetHostData, offsetShape, &offsetDeviceAddr, aclDataType::ACL_FLOAT, &offset);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> offsetTensorPtr(offset, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> offsetDeviceAddrPtr(offsetDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建bias aclTensor
ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
bool transposeX1 = false;
bool transposeX2 = true;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
void* workspaceAddr = nullptr;
// x2的shpe需要transpose成nk格式,再进行transdata
std::vector<int64_t> dimsData = {1, 0};
// 创建dims aclIntArray
aclIntArray *dims = aclCreateIntArray(dimsData.data(), dimsData.size());
// 调用aclnnPermute第一段接口
ret = aclnnPermuteGetWorkspaceSize(x2, dims, x2Transposed, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPermuteGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrPermute(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrPermute.reset(workspaceAddr);
}
// 调用aclnnPermute第二段接口
ret = aclnnPermute(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnPermuteGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
workspaceSize = 0;
// 调用aclnnTransMatmulWeight第一段接口
ret = aclnnTransMatmulWeightGetWorkspaceSize(x2Transposed, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeightGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrTrans(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrTrans.reset(workspaceAddr);
}
// 调用aclnnTransMatmulWeight第二段接口
ret = aclnnTransMatmulWeight(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransMatmulWeight failed. ERROR: %d\n", ret); return ret);
// FLOAT数据类型的scale需要提前调用TransQuantParamV2算子的aclnn接口
// 调用aclnnaclnnTransQuantParamV2第一段接口
ret = aclnnTransQuantParamV2GetWorkspaceSize(scale, offset, quantParam, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
workspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV2(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrV2.reset(workspaceAddr);
}
// 调用aclnnTransQuantParamV2第二段接口
ret = aclnnTransQuantParamV2(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2 failed. ERROR: %d\n", ret); return ret);
// 调用aclnnQuantMatmulV3第一段接口
workspaceSize = 0;
ret = aclnnQuantMatmulV3GetWorkspaceSize(x1, x2Transposed, quantParam, nullptr, bias, transposeX1, transposeX2, out, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV3(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrV3.reset(workspaceAddr);
}
// 调用aclnnQuantMatmulV3第二段接口
ret = aclnnQuantMatmulV3(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3 failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<uint16_t> resultData(size, 0); // C语言中无法直接打印fp16的数据,需要用uint16读出来,自行通过二进制转成fp16
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]);
}
return ACL_SUCCESS;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = aclnnQuantMatmulV3Test(deviceId, stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3Test failed. ERROR: %d\n", ret); return ret);
Finalize(deviceId, stream);
return 0;
}
Atlas A2训练系列产品/Atlas 800I A2推理产品 INT4量化场景示例代码如下(x1和x2数据类型为int4,transposeX2=false),仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <memory>
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_quant_matmul_v3.h"
#include "aclnnop/aclnn_trans_quant_param_v2.h"
#include "aclnnop/aclnn_convert_weight_to_int4_pack.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define CHECK_FREE_RET(cond, return_expr) \
do { \
if (!(cond)) { \
Finalize(deviceId, stream);\
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shapeSize = 1;
for (auto i : shape) {
shapeSize *= i;
}
return shapeSize;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
// 通过hostData获取申请和拷贝的内存byte数
auto size = hostData.size() * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
void Finalize(int32_t deviceId, aclrtStream stream) {
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
}
int aclnnQuantMatmulV3Test(int32_t deviceId, aclrtStream &stream){
auto ret = Init(deviceId, &stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
int64_t m = 16;
int64_t k = 8;
int64_t n = 32;
aclDataType x1Dtype = aclDataType::ACL_INT4;
aclDataType x2Int4PackDtype = aclDataType::ACL_INT4;
std::vector<int64_t> x1Shape = {m, k};
std::vector<int64_t> x2Shape = {k, n};
std::vector<int64_t> x2Int4PackShape = {k, n};
std::vector<int64_t> biasShape = {n};
std::vector<int64_t> scaleShape = {n};
std::vector<int64_t> outShape = {m, n};
void* x1DeviceAddr = nullptr;
void* x2DeviceAddr = nullptr;
void* x2Int4PackDeviceAddr = nullptr;
void* scaleDeviceAddr = nullptr;
void* quantParamDeviceAddr = nullptr;
void* offsetDeviceAddr = nullptr;
void* biasDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
aclTensor* x1 = nullptr;
aclTensor* x2 = nullptr;
aclTensor* x2Int4Pack = nullptr;
aclTensor* bias = nullptr;
aclTensor* scale = nullptr;
aclTensor* quantParam = nullptr;
aclTensor* offset = nullptr;
aclTensor* out = nullptr;
std::vector<int8_t> x1HostData(m * k / 2, 17); // int8: 0001 0001
std::vector<int8_t> x2HostData(k * n, 1);
std::vector<int8_t> x2Int4PackHostData(n * k / 2, 1);
std::vector<int32_t> biasHostData(n, 1);
std::vector<float> scaleHostData(n, 1);
std::vector<uint16_t> outHostData(m * n, 1);
// 创建x1 aclTensor
ret = CreateAclTensor(x1HostData, x1Shape, &x1DeviceAddr, x1Dtype, &x1);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x1TensorPtr(x1, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x1DeviceAddrPtr(x1DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建x2 aclTensor
ret = CreateAclTensor(x2HostData, x2Shape, &x2DeviceAddr, aclDataType::ACL_INT32, &x2);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2TensorPtr(x2, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x2DeviceAddrPtr(x2DeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建x2Int4Pack aclTensor
ret = CreateAclTensor(x2Int4PackHostData, x2Int4PackShape, &x2Int4PackDeviceAddr, x2Int4PackDtype, &x2Int4Pack);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> x2Int4PackTensorPtr(x2Int4Pack, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> x2Int4PackDeviceAddrPtr(x2Int4PackDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建scale aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &scaleDeviceAddr, aclDataType::ACL_FLOAT, &scale);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> scaleTensorPtr(scale, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> scaleDeviceAddrPtr(scaleDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建quantParam aclTensor
ret = CreateAclTensor(scaleHostData, scaleShape, &quantParamDeviceAddr, aclDataType::ACL_UINT64, &quantParam);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> quantParamTensorPtr(quantParam, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> quantParamDeviceAddrPtr(quantParamDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建bias aclTensor
ret = CreateAclTensor(biasHostData, biasShape, &biasDeviceAddr, aclDataType::ACL_INT32, &bias);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> biasTensorPtr(bias, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> biasDeviceAddrPtr(biasDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT16, &out);
std::unique_ptr<aclTensor, aclnnStatus (*)(const aclTensor *)> outTensorPtr(out, aclDestroyTensor);
std::unique_ptr<void, aclError (*)(void *)> outDeviceAddrPtr(outDeviceAddr, aclrtFree);
CHECK_RET(ret == ACL_SUCCESS, return ret);
bool transposeX1 = false;
bool transposeX2 = false;
// 3. 调用CANN算子库API,需要修改为具体的Api名称
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 可以先调用aclnnConvertWeightToINT4Pack接口来构建x2输入数据
// 调用aclnnConvertWeightToINT4Pack第一段接口
ret = aclnnConvertWeightToINT4PackGetWorkspaceSize(x2, x2Int4Pack, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvertWeightToINT4PackGetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> workspaceINT4PackAddrPtr(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceINT4PackAddrPtr.reset(workspaceAddr);
}
// 调用aclnnConvertWeightToINT4Pack第二段接口
ret = aclnnConvertWeightToINT4Pack(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnConvertWeightToINT4Pack failed. ERROR: %d\n", ret); return ret);
// FLOAT数据类型的scale需要提前调用TransQuantParamV2算子的aclnn接口
// 调用aclnnaclnnTransQuantParamV2第一段接口
ret = aclnnTransQuantParamV2GetWorkspaceSize(scale, offset, quantParam, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
workspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV2(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrV2.reset(workspaceAddr);
}
// 调用aclnnTransQuantParamV2第二段接口
ret = aclnnTransQuantParamV2(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnTransQuantParamV2 failed. ERROR: %d\n", ret); return ret);
// 调用aclnnQuantMatmulV3第一段接口
ret = aclnnQuantMatmulV3GetWorkspaceSize(x1, x2Int4Pack, quantParam, nullptr, bias, transposeX1, transposeX2, out,
&workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
workspaceAddr = nullptr;
std::unique_ptr<void, aclError (*)(void *)> workspaceAddrPtrV3(nullptr, aclrtFree);
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret);
workspaceAddrPtrV3.reset(workspaceAddr);
}
// 调用aclnnQuantMatmulV3第二段接口
ret = aclnnQuantMatmulV3(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3 failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<uint16_t> resultData(size, 0); // C语言中无法直接打印fp16的数据,需要用uint16读出来,自行通过二进制转成fp16
ret = aclrtMemcpy(resultData.data(), resultData.size() * sizeof(resultData[0]), outDeviceAddr,
size * sizeof(resultData[0]), ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("result[%ld] is: %u\n", i, resultData[i]);
}
return ACL_SUCCESS;
}
int main() {
// 1. (固定写法)device/stream初始化,参考AscendCL对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = aclnnQuantMatmulV3Test(deviceId, stream);
CHECK_FREE_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnQuantMatmulV3Test failed. ERROR: %d\n", ret); return ret);
Finalize(deviceId, stream);
return 0;
}