下载
中文
注册

--precision_mode_v2

功能说明

设置网络模型的精度模式。

关联参数

  • 该参数不能与--precision_mode参数同时使用,建议使用--precision_mode_v2参数,--precision_mode_v2是新版本中新增的,选项值语义更清晰,便于理解。
  • 当取值为mixed_float16或者mixed_bfloat16时,如果用户想要在内置优化策略基础上进行调整,自行指定哪些算子允许降精度,哪些算子不允许降精度,则需要参见--modify_mixlist参数设置。
  • 推理场景下,使用--precision_mode_v2参数设置整个网络模型的精度模式,可能会有个别算子存在性能或精度问题,该场景下可以使用--keep_dtype参数,使原始网络模型编译时保持个别算子的计算精度不变,但--precision_mode_v2参数取值为origin时,--keep_dtype不生效。

参数取值

  • fp16

    算子支持float16和float32数据类型时,强制选择float16。

  • origin

    保持原图精度。

    • 如果原图中某算子精度为float16,AI Core中该算子的实现不支持float16、仅支持float32和bfloat16,则系统内部会自动采用高精度float32。
    • 如果原图中某算子精度为float16,AI Core中该算子的实现不支持float16、仅支持bfloat16,则会使用float16的AI CPU算子;如果AI CPU算子也不支持,则执行报错。
    • 如果原图中某算子精度为float32,AI Core中该算子的实现不支持float32类型、仅支持float16类型,则会使用float32的AI CPU算子;如果AI CPU算子也不支持,则执行报错。

    bfloat16类型仅在以下产品型号支持

    Atlas A2训练系列产品/Atlas 800I A2推理产品

    Atlas 200/500 A2推理产品

  • cube_fp16in_fp32out
    算子既支持float32又支持float16数据类型时,系统内部根据算子类型不同,选择不同的处理方式。
    • 对于矩阵计算类算子,系统内部会按算子实现的支持情况处理:
      1. 优先选择输入数据类型为float16且输出数据类型为float32;
      2. 如果1中的场景不支持,则选择输入数据类型为float32且输出数据类型为float32;
      3. 如果2中的场景不支持,则选择输入数据类型为float16且输出数据类型为float16;
      4. 如果3中的场景不支持,则报错。
    • 对于矢量计算类算子,表示网络模型中算子支持float16和float32时,强制选择float32,若原图精度为float16,也会强制转为float32。

      如果网络模型中存在部分算子,并且该算子实现不支持float32,比如某算子仅支持float16类型,则该参数不生效,仍然使用支持的float16;如果该算子不支持float32,且又配置了黑名单(precision_reduce = false),则会使用float32的AI CPU算子;如果AI CPU算子也不支持,则执行报错。

  • mixed_float16

    表示使用混合精度float16和float32数据类型来处理神经网络。针对网络模型中float32数据类型的算子,按照内置的优化策略,自动将部分float32的算子降低精度到float16,从而在精度损失很小的情况下提升系统性能并减少内存使用。

    若配置了该种模式,则可以在OPP软件包安装路径${INSTALL_DIR}/opp/built-in/op_impl/ai_core/tbe/config/<soc_version>/aic-<soc_version>-ops-info.json内置优化策略文件中查看“precision_reduce”参数的取值:

    • 若取值为true(白名单),则表示允许将当前float32类型的算子,降低精度到float16。
    • 若取值为false(黑名单),则不允许将当前float32类型的算子降低精度到float16,相应算子仍旧使用float32精度。
    • 若网络模型中算子没有配置该参数(灰名单),当前算子的混合精度处理机制和前一个算子保持一致,即如果前一个算子支持降精度处理,当前算子也支持降精度;如果前一个算子不允许降精度,当前算子也不支持降精度。
  • mixed_bfloat16

    表示使用混合精度bfloat16和float32数据类型来处理神经网络。针对网络模型中float32数据类型的算子,按照内置的优化策略,自动将部分float32的算子降低精度到bfloat16,从而在精度损失很小的情况下提升系统性能并减少内存使用;如果算子不支持bfloat16和float32,则使用AI CPU算子进行计算;如果AI CPU算子也不支持,则执行报错。

    若配置了该种模式,则可以在OPP软件包安装路径${INSTALL_DIR}/opp/built-in/op_impl/ai_core/tbe/config/<soc_version>/aic-<soc_version>-ops-info.json内置优化策略文件中查看“precision_reduce”参数的取值:

    • 若取值为true(白名单),则表示允许将当前float32类型的算子,降低精度到bfloat16
    • 若取值为false(黑名单),则不允许将当前float32类型的算子降低精度到bfloat16,相应算子仍旧使用float32精度。
    • 若网络模型中算子没有配置该参数(灰名单),当前算子的混合精度处理机制和前一个算子保持一致,即如果前一个算子支持降精度处理,当前算子也支持降精度;如果前一个算子不允许降精度,当前算子也不支持降精度。

    该选项仅在以下产品型号支持:

    Atlas A2训练系列产品/Atlas 800I A2推理产品

    Atlas 200/500 A2推理产品

参数默认值:fp16

推荐配置及收益

所配置的精度模式不同,网络模型精度以及性能有所不同,具体为:

精度高低排序:origin>mixed_float16>fp16;性能优劣排序:fp16>=mixed_float16>origin

示例

--precision_mode_v2=fp16

支持的型号

Atlas 200/300/500 推理产品

Atlas 推理系列产品

Atlas 训练系列产品

Atlas 200/500 A2推理产品

Atlas A2训练系列产品/Atlas 800I A2推理产品

使用约束

混合精度场景下,如果版本升级后出现推理性能下降,建议使用AOE工具重新进行调优,调优完成后,通过--op_bank_path参数加载算子调优后自定义知识库的路径,然后重新进行模型转换。

算子调优详情请参见AOE工具使用指南