配置参数说明
基础功能
参数名 |
描述 |
---|---|
graph_run_mode |
图执行模式,取值:
配置示例: npu.global_options().graph_run_mode=1 |
deterministic |
是否开启确定性计算,开启确定性开关后,算子在相同的硬件和输入下,多次执行将产生相同的输出。 此配置项有以下两种取值:
默认情况下,无需开启确定性计算。因为开启确定性计算后,算子执行时间会变慢,导致性能下降。在不开启确定性计算的场景下,多次执行的结果可能不同。这个差异的来源,一般是因为在算子实现中,存在异步的多线程执行,会导致浮点数累加的顺序变化。 但当发现模型执行多次结果不同,或者精度调优时,可以通过此配置开启确定性计算辅助进行调试调优。需要注意,如果希望有完全确定的结果,在训练脚本中需要设置确定的随机数种子,保证程序中产生的随机数也都是确定的。 配置示例: npu.global_options().deterministic=1 |
内存管理
参数名 |
描述 |
---|---|
memory_config.atomic_clean_policy |
是否集中清理网络中所有memset算子占用的内存(含有memset属性的算子都是memset算子),取值包括:
配置示例: npu.global_options().memory_config.atomic_clean_policy=1 |
external_weight |
同一个session内同时加载多个模型时,如果多个模型间的权重能够复用,建议通过此配置项将网络中Const/Constant节点的权重外置,实现多个模型间的权重复用,从而减少权重的内存占用。
说明:一般场景下不需要配置此参数,针对模型加载环境有内存限制的场景,可以将权重外置。 配置示例:
npu.global_options().external_weight=True |
memory_config.static_memory_policy |
网络运行时使用的内存分配方式。
默认值是0,配置示例: npu.global_options().memory_config.static_memory_policy=0 说明:
|
input_fusion_size |
Host侧输入数据搬运到Device侧时,将用户离散多个输入数据合并拷贝的阈值。单位为Byte,最小值为0 Byte,最大值为33554432 Byte(32MB),默认值为131072 Byte(128KB)。若:
例如用户有10个输入,有2个输入数据大小为100KB,2个输入数据大小为50KB,其余输入大于100KB,若设置:
配置示例: npu.global_options().input_fusion_size=25600 |
动态shape
参数名 |
描述 |
---|---|
ac_parallel_enable |
动态shape图中,是否允许AI CPU算子和AI Core算子并行运行。 动态shape图中,开关开启时,系统自动识别图中可以和AI Core并发的AI CPU算子,不同引擎的算子下发到不同流上,实现多引擎间的并行,从而提升资源利用效率和动态shape执行性能。
配置示例: npu.global_options().ac_parallel_enable="1" |
compile_dynamic_mode |
是否需要泛化图中所有的输入shape。
配置示例: npu.global_options().compile_dynamic_mode=True |
功能调试
参数名 |
描述 |
---|---|
op_debug_config |
Global Memory内存检测功能开关。 取值为.cfg配置文件路径,配置文件内多个选项用英文逗号分隔:
配置示例: npu.global_options().op_debug_config="/root/test0.cfg" 其中,test0.cfg文件信息为: op_debug_config=ccec_g,oom 使用约束: 算子编译时,如果用户不想编译所有AI Core算子,而是指定某些AI Core算子进行编译,则需要在上述test0.cfg配置文件中新增op_debug_list字段,算子编译时,只编译该列表指定的算子,并按照op_debug_config配置的选项进行编译。op_debug_list字段要求如下:
test0.cfg文件配置示例如下: op_debug_config= ccec_g,oom op_debug_list=GatherV2,opType::ReduceSum 模型编译时,GatherV2、ReduceSum算子按照ccec_g,oom选项进行编译。 说明:
|
enable_exception_dump |
是否dump异常算子数据。
说明:
若配置了环境变量NPU_COLLECT_PATH,不论配置项“enable_exception_dump”的取值如何,都按照“1:普通ExceptionDump”进行异常算子数据dump,且dump数据存储在环境变量NPU_COLLECT_PATH的指定目录下。 关于环境变量的详细说明可参见《环境变量参考》。 配置示例: npu.global_options().enable_exception_dump=1 |
debug_dir |
用于配置保存算子编译生成的调试相关的过程文件的路径,包括算子.o/.json/.cce等文件。 算子编译生成的调试文件存储优先级为: 配置参数“debug_dir” > 环境变量ASCEND_WORK_PATH > 默认存储路径(当前脚本执行路径)。 关于环境变量ASCEND_WORK_PATH的详细说明可参见《环境变量参考》。 配置示例:
npu.global_options().debug_dir="/home/test" |
export_compile_stat |
用户配置图编译过程中是否生成算子融合信息(包括图融合和UB融合)的结果文件fusion_result.json,支持如下取值:
fusion_result.json文件于记录图编译过程中使用的融合规则,文件中关键字段含义如下:
说明:
配置示例: npu.global_options().export_compile_stat=1 |
精度调优
参数名 |
描述 |
---|---|
precision_mode |
算子精度模式,配置要求为string类型。
针对 针对 配置示例: npu.global_options().precision_mode="allow_mix_precision" 说明:
|
precision_mode_v2 |
算子精度模式,配置要求为string类型。
默认值:
配置示例: npu.global_options().precision_mode_v2="origin" 说明:
|
modify_mixlist |
开启混合精度的场景下,开发者可通过此参数指定混合精度黑白灰名单的路径以及文件名,自行指定哪些算子允许降精度,哪些算子不允许降精度。 用户可以在脚本中通过配置“precision_mode_v2”参数或者“precision_mode”参数开启混合精度。 黑白灰名单存储文件为json格式,配置示例如下:
npu.global_options().modify_mixlist="/home/test/ops_info.json" ops_info.json中可以指定算子类型,多个算子使用英文逗号分隔,样例如下: { "black-list": { // 黑名单 "to-remove": [ // 黑名单算子转换为灰名单算子 "Xlog1py" ], "to-add": [ // 白名单或灰名单算子转换为黑名单算子 "Matmul", "Cast" ] }, "white-list": { // 白名单 "to-remove": [ // 白名单算子转换为灰名单算子 "Conv2D" ], "to-add": [ // 黑名单或灰名单算子转换为白名单算子 "Bias" ] } } 说明:上述配置文件样例中展示的算子仅作为参考,请基于实际硬件环境和具体的算子内置优化策略进行配置。 混合精度场景下算子的内置优化策略可在“CANN软件安装目录/opp/built-in/op_impl/ai_core/tbe/config/<soc_version>/aic-<soc_version>-ops-info.json”文件中查询,例如: "Conv2D":{ "precision_reduce":{ "flag":"true" },
|
customize_dtypes |
使用precision_mode参数设置整个网络的精度模式时,可能会存在个别算子存在精度问题,此种场景下,可以使用customize_dtypes参数配置个别算子的精度模式,而模型中的其他算子仍以precision_mode指定的精度模式进行编译。需要注意,当precision_mode取值为“must_keep_origin_dtype”时,customize_dtypes参数不生效。 该参数需要配置为配置文件路径及文件名,例如:/home/test/customize_dtypes.cfg。 配置示例: npu.global_options().customize_dtypes = "/home/test/customize_dtypes.cfg" 配置文件中列举需要自定义计算精度的算子名称或算子类型,每个算子单独一行,且算子类型必须为基于Ascend IR定义的算子的类型。对于同一个算子,如果同时配置了算子名称和算子类型,编译时以算子名称为准。 配置文件格式要求: # 按照算子名称配置 Opname1::InputDtype:dtype1,dtype2,…OutputDtype:dtype1,… Opname2::InputDtype:dtype1,dtype2,…OutputDtype:dtype1,… # 按照算子类型配置 OpType::TypeName1:InputDtype:dtype1,dtype2,…OutputDtype:dtype1,… OpType::TypeName2:InputDtype:dtype1,dtype2,…OutputDtype:dtype1,… 配置文件配置示例: # 按照算子名称配置 resnet_v1_50/block1/unit_3/bottleneck_v1/Relu::InputDtype:float16,int8,OutputDtype:float16,int8 # 按照算子类型配置 OpType::Relu:InputDtype:float16,int8,OutputDtype:float16,int8 说明:
|
精度比对
参数名 |
描述 |
---|---|
fusion_switch_file |
融合开关配置文件路径以及文件名。 格式要求:支持大小写字母(a-z,A-Z)、数字(0-9)、下划线(_)、中划线(-)、句点(.)、中文字符。 系统内置了一些图融合和UB融合规则,均为默认开启,可以根据需要关闭指定的融合规则。 配置示例:
npu.global_options().fusion_switch_file="/home/test/fusion_switch.cfg" 配置文件fusion_switch.cfg样例如下,on表示开启,off表示关闭。 { "Switch":{ "GraphFusion":{ "RequantFusionPass":"on", "ConvToFullyConnectionFusionPass":"off", "SoftmaxFusionPass":"on", "NotRequantFusionPass":"on", "ConvConcatFusionPass":"on", "MatMulBiasAddFusionPass":"on", "PoolingFusionPass":"on", "ZConcatv2dFusionPass":"on", "ZConcatExt2FusionPass":"on", "TfMergeSubFusionPass":"on" }, "UBFusion":{ "TbePool2dQuantFusionPass":"on" } } } 同时支持用户一键关闭融合规则: { "Switch":{ "GraphFusion":{ "ALL":"off" }, "UBFusion":{ "ALL":"off" } } } 需要注意的是:
|
dump_config.enable_dump |
是否开启Data Dump功能,默认值:False。
配置示例:
npu.global_options().dump_config.enable_dump=True |
dump_config.dump_path |
Dump文件保存路径。enable_dump或enable_dump_debug为true时,该参数必须配置。 该参数指定的目录需要在启动训练的环境上(容器或Host侧)提前创建且确保安装时配置的运行用户具有读写权限,支持配置绝对路径或相对路径(相对执行命令行时的当前路径)。
配置示例:
npu.global_options().dump_config.dump_path = "/home/HwHiAiUser/output" |
dump_config.dump_step |
指定采集哪些迭代的Data Dump数据。 多个迭代用“|”分割,例如:0|5|10;也可以用"-"指定迭代范围,例如:0|3-5|10。 若不配置该参数,表示采集所有迭代的dump数据。 配置示例:
npu.global_options().dump_config.dump_step="0|5" |
dump_config.dump_mode |
Data Dump模式,用于指定dump算子输入还是输出数据,默认为output。取值如下:
说明:
配置为all时,由于部分算子在执行过程中会修改输入数据,例如集合通信类算子HcomAllGather、HcomAllReduce等,因此系统在进行dump时,会在算子执行前dump算子输入,在算子执行后dump算子输出,这样,针对同一个算子,算子输入、输出的dump数据是分开落盘,会出现多个dump文件,在解析dump文件后,用户可通过文件内容判断是输入还是输出。 配置示例:
npu.global_options().dump_config.dump_mode="all" |
dump_config.dump_data |
指定算子dump内容类型,取值:
大规模训练场景下,通常dump数据量太大并且耗时长,可以先dump所有算子的统计数据,根据统计数据识别可能异常的算子,然后再指定dump异常算子的input或output数据。 配置示例: npu.global_options().dump_config.dump_data = "stats" |
dump_config.dump_layer |
指定需要dump的算子。取值为算子名,多个算子名之间使用空格分隔。若不配置此字段,默认dump全部算子。 若指定的算子其输入涉及data算子,会同时将data算子信息dump出来。 配置示例: npu.global_options().dump_config.dump_layer = "nodename1 nodename2 nodename3" |
dump_config.enable_dump_debug |
溢出检测场景下,是否开启溢出数据采集功能,默认值:False。
说明:
配置示例:
npu.global_options().dump_config.enable_dump_debug=True |
dump_config.dump_debug_mode |
溢出检测模式,取值如下:
配置示例:
npu.global_options().dump_config.dump_debug_mode="aicore_overflow" |
quant_dumpable |
如果TensorFlow网络是经过AMCT工具量化后的网络,可通过此参数控制是否采集量化前的dump数据,默认值为“0”。
配置示例: npu.global_options().quant_dumpable="1" 说明:
此参数仅适用于在线推理场景下使用。 开启Data Dump的场景下,可通过将此配置项配置为“1”,确保可以采集量化前的dump数据。 |
性能调优
参数名 |
描述 |
---|---|
hcom_parallel |
是否启用Allreduce梯度更新和前后向并行执行。
默认值为“True”,配置示例: npu.global_options().hcom_parallel=True 针对小网络(例如:Resnet18),建议配置为False。 |
enable_small_channel |
是否使能small channel的优化,使能后在channel<=4的卷积层会有性能收益。
配置示例: npu.global_options().enable_small_channel=1 |
op_precision_mode |
设置具体某个算子的高精度或高性能模式,通过该参数传入自定义的模式配置文件op_precision.ini,可以为不同的算子设置不同的模式。 支持按照算子类型或者按照节点名称设置,按节点名称设置的优先级高于算子类型,样例如下: [ByOpType] optype1=high_precision optype2=high_performance optype3=enable_hi_float_32_execution optype4=support_out_of_bound_index [ByNodeName] nodename1=high_precision nodename2=high_performance nodename3=enable_hi_float_32_execution nodename4=support_out_of_bound_index
具体某个算子支持配置的精度/性能模式取值,可通过CANN软件安装后文件存储路径的“opp/built-in/op_impl/ai_core/tbe/impl_mode/all_ops_impl_mode.ini”文件查看。 该参数不能与op_select_implmode、optypelist_for_implmode参数同时使用,若三个参数同时配置,则只有op_precision_mode参数指定的模式生效。 一般场景下该参数无需配置。若使用高性能或者高精度模式,网络性能或者精度不是最优,则可以使用该参数,通过配置ini文件调整某个具体算子的精度模式。 配置示例: npu.global_options().op_precision_mode="/home/test/op_precision.ini" |
stream_max_parallel_num |
此参数仅适用于NMT网络。 指定AICPU/AICORE引擎的并行度,从而实现AICPU/AICORE算子间的并行执行。 DNN_VM_AICPU为AICPU引擎名称,本示例指定了AICPU引擎的并发数为10; AIcoreEngine为AICORE引擎名称,本示例指定了AICORE引擎的并发数为1。 AICPU/AICORE引擎的并行度默认为1,取值范围为:[1,13]。 配置示例: npu.global_options().stream_max_parallel_num="DNN_VM_AICPU:10,AIcoreEngine:1" |
is_tailing_optimization |
此参数仅适用于Bert网络。 分布式训练场景下,是否开启通信拖尾优化,用于提升训练性能。通信拖尾优化即,通过计算依赖关系的改变,将不依赖于最后一个AR(梯度聚合分片)的计算操作调度到和最后一个AR并行进行,以达到优化通信拖尾时间的目的。取值:
配置示例: npu.global_options().is_tailing_optimization=True |
enable_scope_fusion_passes |
指定编译时需要生效的融合规则列表。此处传入注册的融合规则名称,允许传入多个,用“,”隔开。 无论是内置还是用户自定义的Scope融合规则,都分为如下两类:
配置示例: npu.global_options().enable_scope_fusion_passes="ScopeLayerNormPass,ScopeClipBoxesPass" |
Profiling
参数名 |
描述 |
---|---|
profiling_config.enable_profiling |
是否开启Profiling功能,默认关闭。
配置示例:
npu.global_options().profiling_config.enable_profiling=True 说明:此配置项的优先级高于环境变量PROFILING_MODE,关于环境变量的详细说明可参见《环境变量参考》中的“辅助功能 > 性能数据采集”章节。 |
profiling_config.profiling_options |
Profiling配置选项。
说明:
配置示例:
npu.global_options().profiling_config.profiling_options = '{"output":"/tmp/profiling","training_trace":"on","fp_point":"resnet_model/conv2d/Conv2Dresnet_model/batch_normalization/FusedBatchNormV3_Reduce","bp_point":"gradients/AddN_70"}' |
AOE
参数名 |
描述 |
---|---|
aoe_config.aoe_mode |
通过AOE工具进行调优的调优模式。
说明:
配置示例: npu.global_options().aoe_config.aoe_mode="1" |
aoe_config.work_path |
AOE工具调优工作目录,存放调优配置文件和调优结果文件,默认生成在训练当前目录下。 该参数类型为字符串,指定的目录需要在启动训练的环境上(容器或Host侧)提前创建且确保安装时配置的运行用户具有读写权限,支持配置绝对路径或相对路径(相对执行命令行时的当前路径)。
配置示例: npu.global_options().aoe_config.work_path = "/home/HwHiAiUser/output" |
aoe_config.aoe_config_file |
通过AOE工具进行调优时,若仅针对网络中某些性能较低的算子进行调优,可通过此参数进行设置。该参数配置为包含算子信息的配置文件路径及文件名,例如:/home/test/cfg/tuning_config.cfg。 配置示例: npu.global_options().aoe_config.aoe_config_file="/home/test/cfg/tuning_config.cfg" 配置文件中配置的是需要进行调优的算子信息,文件内容格式如下: { "tune_ops_name":["bert/embeddings/addbert/embeddings/add_1","loss/MatMul"], "tune_ops_type":["Add", "Mul"] "tune_optimization_level":"O1", "feature":["deeper_opat"] }
说明:
如上配置文件中,tune_ops_type和tune_ops_name可以同时存在,同时存在时取并集,也可以只存在某一个。 |
算子编译
参数名 |
描述 |
---|---|
op_compiler_cache_mode |
用于配置算子编译磁盘缓存模式。默认值为enable。
使用说明:
配置示例:
npu.global_options().op_compiler_cache_mode="enable" |
op_compiler_cache_dir |
用于配置算子编译磁盘缓存的目录。 路径支持大小写字母(a-z,A-Z)、数字(0-9)、下划线(_)、中划线(-)、句点(.)、中文字符。 如果参数指定的路径存在且有效,则在指定的路径下自动创建子目录kernel_cache;如果指定的路径不存在但路径有效,则先自动创建目录,然后在该路径下自动创建子目录kernel_cache。 算子编译缓存文件存储优先级为: 配置参数“op_compiler_cache_dir” > ${ASCEND_CACHE_PATH}/kernel_cache_host标识 > 默认路径($HOME/atc_data)。 关于环境变量ASCEND_CACHE_PATH的详细说明可参见《环境变量参考》。 配置示例:
npu.global_options().op_compiler_cache_dir="/home/test/kernel_cache" |
异常补救
参数名 |
描述 |
---|---|
stream_sync_timeout |
图执行时,stream同步等待超时时间,超过配置时间时报同步失败。单位:ms 默认值-1,表示无等待时间,出现同步失败不报错。 说明:集群训练场景下,此配置的值(即stream同步等待超时时间)需要大于集合通信超时时间,即环境变量HCCL_EXEC_TIMEOUT的值。HCCL_EXEC_TIMEOUT的详细说明可参见《环境变量参考》的“执行相关 > 集合通信”章节。 配置示例: npu.global_options().stream_sync_timeout=600000 |
event_sync_timeout |
图执行时,event同步等待超时时间,超过配置时间时报同步失败。单位:ms 默认值-1,表示无等待时间,出现同步失败不报错。 配置示例: npu.global_options().event_sync_timeout=600000 |
试验参数
试验参数为调试功能扩展参数,后续版本可能会存在变更,不支持应用于商用产品中。
参数名 |
描述 |
---|---|
jit_compile |
模型编译时是否优先在线编译。
默认值:auto。 配置示例: npu.global_options().jit_compile = "auto" 须知:
该参数仅受限于大型推荐类型网络使用。 |
后续版本废弃配置
参数名 |
描述 |
---|---|
op_select_implmode |
昇腾AI处理器部分内置算子有高精度和高性能实现方式,用户可以通过该参数配置模型编译时选择哪种算子。取值包括:
默认值为None,代表不使能此配置。 配置示例:
npu.global_options().op_select_implmode="high_precision" |
optypelist_for_implmode |
列举算子optype的列表,该列表中的算子使用op_select_implmode参数指定的模式,当前支持的算子为Pooling、SoftmaxV2、LRN、ROIAlign,多个算子以“,”分隔。 该参数需要与op_select_implmode参数配合使用,配置示例: npu.global_options().op_select_implmode="high_precision" npu.global_options().optypelist_for_implmode="Pooling,SoftmaxV2" 默认值为None,代表不使能此配置。 |
variable_format_optimize |
是否开启变量格式优化。
为了提高训练效率,在网络执行的变量初始化过程中,将变量转换成更适合在昇腾AI处理器上运行的数据格式。但在用户特殊要求场景下,可以选择关闭该功能开关。 默认值为None,代表不使能此配置。 配置示例: npu.global_options().variable_format_optimize=True |
op_debug_level |
算子debug功能开关,取值:
默认值为None,代表不使能此配置。 配置示例: npu.global_options().op_debug_level=0 |
graph_memory_max_size |
历史版本,该参数用于指定网络静态内存和最大动态内存的大小。 当前版本,该参数不再生效。系统会根据网络使用的实际内存大小动态申请。 |
variable_memory_max_size |
历史版本,该参数用于指定变量内存的大小。 当前版本,该参数不再生效。系统会根据网络使用的实际内存大小动态申请。 |