下载
中文
注册
我要评分
文档获取效率
文档正确性
内容完整性
文档易理解
在线提单
论坛求助
昇腾小AI

create_quant_config

功能说明

训练后量化接口,根据图的结构找到所有可量化的层,自动生成量化配置文件,并将可量化层的量化配置信息写入文件。

函数原型

create_quant_config(config_file, graph, skip_layers=None, batch_num=1, activation_offset=True, config_defination=None)

参数说明

参数名

输入/返回值

含义

使用限制

config_file

输入

待生成的量化配置文件存放路径及名称。

如果存放路径下已经存在该文件,则调用该接口时会覆盖已有文件。

数据类型:string

graph

输入

用户传入的待量化模型的tf.Graph图。

数据类型:tf.Graph

skip_layers

输入

tf.Graph图中不需要量化层的层名。

默认值:None

数据类型:list,列表中元素类型为string

使用约束:如果使用简易配置文件作为入参,则该参数需要在简易配置文件中设置,此时输入参数中该参数配置不生效。

batch_num

输入

量化使用的batch数量,即使用多少个batch的数据生成量化因子。

数据类型:int

取值范围:大于0的整数

默认值:1

使用约束:

  • batch_num不宜过大,batch_num与batch_size的乘积为量化过程中使用的图片数量,过多的图片会占用较大的内存。
  • 如果使用简易配置文件作为入参,则该参数需要在简易配置文件中设置,此时输入参数中该参数配置不生效。

activation_offset

输入

数据量化是否带offset。

默认值:True

数据类型:bool

使用约束:如果使用简易配置文件作为入参,则该参数需要在简易配置文件中设置,此时输入参数中该参数配置不生效。

config_defination

输入

训练后量化简易配置文件。

基于calibration_config_tf.proto文件生成的简易量化配置文件quant.cfg,calibration_config_tf.proto文件所在路径为:昇腾模型压缩工具安装目录/amct_tensorflow/proto/calibration_config_tf.proto。

calibration_config_tf.proto文件参数解释以及生成的quant.cfg简易量化配置文件样例请参见训练后量化简易配置文件说明

默认值:None

数据类型:string

使用约束:当取值为None时,使用输入参数生成配置文件;否则,忽略输入的其他量化参数(skip_layers,batch_num,activation_offset),根据简易量化配置文件参数config_defination生成json格式的配置文件。

返回值说明

无。

函数输出

输出一个json格式的量化配置文件(重新执行量化时,该接口输出的量化配置文件将会被覆盖)。

{
    "version":1,
    "batch_num":1,
    "activation_offset":true,
    "joint_quant":false,
    "do_fusion":true,
    "skip_fusion_layers":[],
    "tensor_quantize":[
        {
            "layer_name": "MaxPool",
            "input_index": 0,
            "activation_quant_params":{
                "num_bits":8,
	        "act_algo":"hfmg",
	        "num_of_bins":4096
                "asymmetric":false
             }
	}
    ]
    "MobilenetV2/Conv/Conv2D":{
        "quant_enable":true,
        "activation_quant_params":{
            "num_bits":8,                   
            "max_percentile":0.999999,
            "min_percentile":0.999999,
            "search_range":[
                0.7,
                1.3
            ],
            "search_step":0.01
            "act_algo":"ifmr"
            "asymmetric":false
        },
        "weight_quant_params":{
            "num_bits":8,
            "wts_algo":"arq_quantize",
            "channel_wise":true
        }
    },
    "MobilenetV2/Conv_1/Conv2D":{
        "quant_enable":true,
        "activation_quant_params":{
            "num_bits":8,
            "max_percentile":0.999999,
            "min_percentile":0.999999,
            "search_range":[
                0.7,
                1.3
            ],
            "search_step":0.01
            "act_algo":"ifmr"
            "asymmetric":false
        },
        "weight_quant_params":{
            "num_bits":8,
            "wts_algo":"arq_quantize",
            "channel_wise":true
        }
    },
    "MobilenetV2/Logits/AvgPool":{
        "quant_enable":true,
        "activation_quant_params":{
            "num_bits":8,
            "max_percentile":0.999999,
            "min_percentile":0.999999,
            "search_range":[
                0.7,
                1.3
            ],
            "search_step":0.01
            "act_algo":"ifmr"
            "asymmetric":false
        },
        "weight_quant_params":{
            "num_bits":8,
            "wts_algo":"arq_quantize",
            "channel_wise":false
        }
    }
}

调用示例

import amct_tensorflow as amct
# 建立待量化的网络图结构
network = build_network()
# 生成量化配置文件
amct.create_quant_config(config_file="./configs/config.json",
                    graph=tf.get_default_graph(),
                    skip_layers=None,
                    batch_num=1,
                    activation_offset=True)
搜索结果
找到“0”个结果

当前产品无相关内容

未找到相关内容,请尝试其他搜索词