aclnnGroupNormSiluV2
支持的产品型号
- Atlas A2训练系列产品/Atlas 800I A2推理产品。
- Atlas 推理系列产品。
接口原型
每个算子分为两段式接口,必须先调用“aclnnGroupNormSiluV2GetWorkspaceSize”接口获取计算所需workspace大小以及包含了算子计算流程的执行器,再调用“aclnnGroupNormSiluV2”接口执行计算。
aclnnStatus aclnnGroupNormSiluV2GetWorkspaceSize(const aclTensor *self, const aclTensor *gamma, const aclTensor *beta, int64_t group, double eps, bool activateSilu, aclTensor *out, aclTensor *meanOut, aclTensor *rstdOut, uint64_t *workspaceSize, aclOpExecutor **executor)
aclnnStatus aclnnGroupNormSiluV2(void *workspace, uint64_t workspaceSize, aclOpExecutor *executor, const aclrtStream stream)
功能描述
- 接口功能:计算输入self的组归一化结果out,均值meanOut,标准差的倒数rstdOut,以及silu的输出。
- 计算公式: 记 , 代表的均值,代表的样本方差,则
aclnnGroupNormSiluV2GetWorkspaceSize
参数说明:
- self(aclTensor*,计算输入):
out
计算公式中的,数据类型支持BFLOAT16、FLOAT16、FLOAT,维度需大于一维,数据格式支持ND,支持非连续的Tensor。 - gamma(aclTensor*,计算输入):可选参数,
out
计算公式中的,数据类型支持BFLOAT16、FLOAT16、FLOAT,维度为一维,元素数量需与输入的第1维度相同,数据格式支持ND,支持非连续的Tensor。 - beta(aclTensor*,计算输入):可选参数,
out
计算公式中的,数据类型支持BFLOAT16、FLOAT16、FLOAT,维度为一维,元素数量需与输入的第1维度相同,数据格式支持ND,支持非连续的Tensor。 - group(int,计算输入): INT32或者INT64常量,表示将输入的第1维度分为group组。
- eps(double,计算输入): DOUBLE常量,
out
和rstdOut
计算公式中的值。 - activateSilu(bool,计算输入): BOOL常量,是否支持silu计算。如果设置为true,则表示groupnorm计算后继续silu计算。
- out(aclTensor*,计算输出): 输出张量,数据类型支持BFLOAT16、FLOAT16、FLOAT,数据类型和shape与相同,数据格式支持ND,支持非连续的Tensor。
- meanOut(aclTensor*,计算输出): 输出张量,数据类型支持BFLOAT16、FLOAT16、FLOAT,数据类型与相同,shape为
(N, group)
,其中N
与的第0维度保持一致,数据格式支持ND,支持非连续的Tensor。 - rstdOut(aclTensor*,计算输出): 输出张量,数据类型支持BFLOAT16、FLOAT16、FLOAT,数据类型与相同,shape为
(N, group)
,其中N
与的第0维度保持一致,数据格式支持ND,支持非连续的Tensor。 - workspaceSize(uint64_t*, 出参): 返回需要在Device侧申请的workspace大小。
- executor(aclOpExecutor**, 出参): 返回op执行器,包含算子计算流程。
- self(aclTensor*,计算输入):
返回值:
aclnnStatus: 返回状态码,具体参见aclnn返回码。
161001 ACLNN_ERR_PARAM_NULLPTR:1. 传入的self、out、meanOut、rstdOut是空指针时。
161002 ACLNN_ERR_PARAM_INVALID:1. self、gamma、beta、out、meanOut、rstdOut数据类型不在支持的范围之内。
2. out、meanOut、rstdOut的数据类型与self相同,gamma、beta与self可以不同。
3. gamma与beta的数据类型必须保持一致,且数据类型与self相同或者为FLOAT。
4. self维度不大于1。
5. self第1维度不能被group整除
6. eps小于等于0。
7. out的shape与self不同。
8. meanOut与rstdOut的shape不为(N, group),其中N为self第0维度值。
9. gamma不为1维或元素数量不等于输入self第1维度。
10. beta不为1维或元素数量不等于输入self第1维度。
11. group小于等于0。
12. self第0维小于等于0.
13. self第1维小于等于0.
aclnnGroupNormSiluV2
参数说明:
- workspace(void*, 入参):在Device侧申请的workspace内存地址。
- workspaceSize(uint64_t, 入参):在Device侧申请的workspace大小,由第一段接口aclnnGroupNormSiluV2GetWorkspaceSize获取。
- executor(aclOpExecutor*, 入参):op执行器,包含了算子计算流程。
- stream(aclrtStream, 入参):指定执行任务的 AscendCL Stream流。
返回值:
aclnnStatus:返回状态码,具体参见aclnn返回码。
约束与限制
无
调用示例
示例代码如下,仅供参考,具体编译和执行过程请参考编译与运行样例。
#include <iostream>
#include <vector>
#include "acl/acl.h"
#include "aclnnop/aclnn_group_norm_silu.h"
#define CHECK_RET(cond, return_expr) \
do { \
if (!(cond)) { \
return_expr; \
} \
} while (0)
#define LOG_PRINT(message, ...) \
do { \
printf(message, ##__VA_ARGS__); \
} while (0)
int64_t GetShapeSize(const std::vector<int64_t>& shape) {
int64_t shape_size = 1;
for (auto i : shape) {
shape_size *= i;
}
return shape_size;
}
int Init(int32_t deviceId, aclrtStream* stream) {
// 固定写法,AscendCL初始化
auto ret = aclInit(nullptr);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclInit failed. ERROR: %d\n", ret); return ret);
ret = aclrtSetDevice(deviceId);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSetDevice failed. ERROR: %d\n", ret); return ret);
ret = aclrtCreateStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtCreateStream failed. ERROR: %d\n", ret); return ret);
return 0;
}
template <typename T>
int CreateAclTensor(const std::vector<T>& hostData, const std::vector<int64_t>& shape, void** deviceAddr,
aclDataType dataType, aclTensor** tensor) {
auto size = GetShapeSize(shape) * sizeof(T);
// 调用aclrtMalloc申请device侧内存
auto ret = aclrtMalloc(deviceAddr, size, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMalloc failed. ERROR: %d\n", ret); return ret);
// 调用aclrtMemcpy将host侧数据拷贝到device侧内存上
ret = aclrtMemcpy(*deviceAddr, size, hostData.data(), size, ACL_MEMCPY_HOST_TO_DEVICE);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtMemcpy failed. ERROR: %d\n", ret); return ret);
// 计算连续tensor的strides
std::vector<int64_t> strides(shape.size(), 1);
for (int64_t i = shape.size() - 2; i >= 0; i--) {
strides[i] = shape[i + 1] * strides[i + 1];
}
// 调用aclCreateTensor接口创建aclTensor
*tensor = aclCreateTensor(shape.data(), shape.size(), dataType, strides.data(), 0, aclFormat::ACL_FORMAT_ND,
shape.data(), shape.size(), *deviceAddr);
return 0;
}
int main() {
// 1. (固定写法)device/stream初始化, 参考acl对外接口列表
// 根据自己的实际device填写deviceId
int32_t deviceId = 0;
aclrtStream stream;
auto ret = Init(deviceId, &stream);
// check根据自己的需要处理
CHECK_RET(ret == 0, LOG_PRINT("Init acl failed. ERROR: %d\n", ret); return ret);
// 2. 构造输入与输出,需要根据API的接口自定义构造
std::vector<int64_t> selfShape = {2, 3, 4};
std::vector<int64_t> gammaShape = {3};
std::vector<int64_t> betaShape = {3};
std::vector<int64_t> outShape = {2, 3, 4};
std::vector<int64_t> meanOutShape = {2, 1};
std::vector<int64_t> rstdOutShape = {2, 1};
void* selfDeviceAddr = nullptr;
void* gammaDeviceAddr = nullptr;
void* betaDeviceAddr = nullptr;
void* outDeviceAddr = nullptr;
void* meanOutDeviceAddr = nullptr;
void* rstdOutDeviceAddr = nullptr;
aclTensor* self = nullptr;
aclTensor* gamma = nullptr;
aclTensor* beta = nullptr;
aclTensor* out = nullptr;
aclTensor* meanOut = nullptr;
aclTensor* rstdOut = nullptr;
std::vector<float> selfHostData = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0};
std::vector<float> gammaHostData = {2.0, 2, 2};
std::vector<float> betaHostData = {2.0, 2, 2};
std::vector<float> outHostData = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0,
13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0};
std::vector<float> meanOutHostData = {2.0, 2};
std::vector<float> rstdOutHostData = {2.0, 2};
int64_t group = 1;
double eps = 0.00001;
bool activateSilu = true;
// 创建self aclTensor
ret = CreateAclTensor(selfHostData, selfShape, &selfDeviceAddr, aclDataType::ACL_FLOAT, &self);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建gamma aclTensor
ret = CreateAclTensor(gammaHostData, gammaShape, &gammaDeviceAddr, aclDataType::ACL_FLOAT, &gamma);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建beta aclTensor
ret = CreateAclTensor(betaHostData, betaShape, &betaDeviceAddr, aclDataType::ACL_FLOAT, &beta);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建out aclTensor
ret = CreateAclTensor(outHostData, outShape, &outDeviceAddr, aclDataType::ACL_FLOAT, &out);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建meanOut aclTensor
ret = CreateAclTensor(meanOutHostData, meanOutShape, &meanOutDeviceAddr, aclDataType::ACL_FLOAT, &meanOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 创建rstdOut aclTensor
ret = CreateAclTensor(rstdOutHostData, rstdOutShape, &rstdOutDeviceAddr, aclDataType::ACL_FLOAT, &rstdOut);
CHECK_RET(ret == ACL_SUCCESS, return ret);
// 3. 调用CANN算子库API,需要修改为具体的API
uint64_t workspaceSize = 0;
aclOpExecutor* executor;
// 调用aclnnGroupNormSiluV2第一段接口
ret = aclnnGroupNormSiluV2GetWorkspaceSize(self, gamma, beta, group, eps, activateSilu, out, meanOut, rstdOut, &workspaceSize, &executor);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnGroupNormSiluV2GetWorkspaceSize failed. ERROR: %d\n", ret); return ret);
// 根据第一段接口计算出的workspaceSize申请device内存
void* workspaceAddr = nullptr;
if (workspaceSize > 0) {
ret = aclrtMalloc(&workspaceAddr, workspaceSize, ACL_MEM_MALLOC_HUGE_FIRST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("allocate workspace failed. ERROR: %d\n", ret); return ret;);
}
// 调用aclnnGroupNormSiluV2第二段接口
ret = aclnnGroupNormSiluV2(workspaceAddr, workspaceSize, executor, stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclnnGroupNormSiluV2 failed. ERROR: %d\n", ret); return ret);
// 4. (固定写法)同步等待任务执行结束
ret = aclrtSynchronizeStream(stream);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("aclrtSynchronizeStream failed. ERROR: %d\n", ret); return ret);
// 5. 获取输出的值,将device侧内存上的结果拷贝至host侧,需要根据具体API的接口定义修改
auto size = GetShapeSize(outShape);
std::vector<float> outResultData(size, 0);
ret = aclrtMemcpy(outResultData.data(), outResultData.size() * sizeof(outResultData[0]), outDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("outResultData[%ld] is: %f\n", i, outResultData[i]);
}
size = GetShapeSize(meanOutShape);
std::vector<float> meanResultData(size, 0);
ret = aclrtMemcpy(meanResultData.data(), meanResultData.size() * sizeof(meanResultData[0]), meanOutDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("meanResultData[%ld] is: %f\n", i, meanResultData[i]);
}
size = GetShapeSize(rstdOutShape);
std::vector<float> rstdResultData(size, 0);
ret = aclrtMemcpy(rstdResultData.data(), rstdResultData.size() * sizeof(rstdResultData[0]), rstdOutDeviceAddr, size * sizeof(float),
ACL_MEMCPY_DEVICE_TO_HOST);
CHECK_RET(ret == ACL_SUCCESS, LOG_PRINT("copy result from device to host failed. ERROR: %d\n", ret); return ret);
for (int64_t i = 0; i < size; i++) {
LOG_PRINT("rstdResultData[%ld] is: %f\n", i, rstdResultData[i]);
}
// 6. 释放aclTensor和aclScalar,需要根据具体API的接口定义修改
aclDestroyTensor(self);
aclDestroyTensor(gamma);
aclDestroyTensor(beta);
aclDestroyTensor(out);
aclDestroyTensor(meanOut);
aclDestroyTensor(rstdOut);
// 7. 释放device资源,需要根据具体API的接口定义修改
aclrtFree(selfDeviceAddr);
aclrtFree(gammaDeviceAddr);
aclrtFree(betaDeviceAddr);
aclrtFree(outDeviceAddr);
aclrtFree(meanOutDeviceAddr);
aclrtFree(rstdOutDeviceAddr);
if (workspaceSize > 0) {
aclrtFree(workspaceAddr);
}
aclrtDestroyStream(stream);
aclrtResetDevice(deviceId);
aclFinalize();
return 0;
}